These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 21115281)
1. Chitosan-polycaprolactone copolymer microspheres for transforming growth factor-β1 delivery. Wu H; Wang S; Fang H; Zan X; Zhang J; Wan Y Colloids Surf B Biointerfaces; 2011 Feb; 82(2):602-8. PubMed ID: 21115281 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering. Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821 [TBL] [Abstract][Full Text] [Related]
3. Enhanced chondrogenesis of adipose-derived stem cells by the controlled release of transforming growth factor-beta1 from hybrid microspheres. Han Y; Wei Y; Wang S; Song Y Gerontology; 2009; 55(5):592-9. PubMed ID: 19672054 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of sodium hexameta phosphate cross-linked chitosan microspheres for controlled and sustained delivery of centchroman. Gupta KC; Jabrail FH Int J Biol Macromol; 2006 May; 38(3-5):272-83. PubMed ID: 16620951 [TBL] [Abstract][Full Text] [Related]
5. Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Lee JE; Kim SE; Kwon IC; Ahn HJ; Cho H; Lee SH; Kim HJ; Seong SC; Lee MC Artif Organs; 2004 Sep; 28(9):829-39. PubMed ID: 15320946 [TBL] [Abstract][Full Text] [Related]
6. Enhanced bone formation by transforming growth factor-beta1-releasing collagen/chitosan microgranules. Lee JY; Kim KH; Shin SY; Rhyu IC; Lee YM; Park YJ; Chung CP; Lee SJ J Biomed Mater Res A; 2006 Mar; 76(3):530-9. PubMed ID: 16331652 [TBL] [Abstract][Full Text] [Related]
7. Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Li F; Liu X; Zhao S; Wu H; Xu HH Dent Mater; 2014 Feb; 30(2):172-81. PubMed ID: 24332410 [TBL] [Abstract][Full Text] [Related]
8. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Lin WC; Yu DG; Yang MC Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):143-51. PubMed ID: 16054345 [TBL] [Abstract][Full Text] [Related]
9. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. Holland TA; Tabata Y; Mikos AG J Control Release; 2005 Jan; 101(1-3):111-25. PubMed ID: 15588898 [TBL] [Abstract][Full Text] [Related]
10. Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery. Ma L; Liu C Colloids Surf B Biointerfaces; 2010 Feb; 75(2):448-53. PubMed ID: 19819676 [TBL] [Abstract][Full Text] [Related]
11. Ionically cross-linked chitosan microspheres for controlled release of bioactive nerve growth factor. Zeng W; Huang J; Hu X; Xiao W; Rong M; Yuan Z; Luo Z Int J Pharm; 2011 Dec; 421(2):283-90. PubMed ID: 22001532 [TBL] [Abstract][Full Text] [Related]
12. Preparation and improvement of release behavior of chitosan microspheres containing insulin. Wang LY; Gu YH; Su ZG; Ma GH Int J Pharm; 2006 Mar; 311(1-2):187-95. PubMed ID: 16436319 [TBL] [Abstract][Full Text] [Related]
13. Chitosan-Polylactide/Hyaluronic Acid Complex Microspheres as Carriers for Controlled Release of Bioactive Transforming Growth Factor-β1. Min Q; Liu J; Li J; Wan Y; Wu J Pharmaceutics; 2018 Nov; 10(4):. PubMed ID: 30453642 [TBL] [Abstract][Full Text] [Related]
14. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906 [TBL] [Abstract][Full Text] [Related]
15. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Gupta KC; Jabrail FH Carbohydr Res; 2006 May; 341(6):744-56. PubMed ID: 16499893 [TBL] [Abstract][Full Text] [Related]
16. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. Rai B; Teoh SH; Ho KH J Control Release; 2005 Oct; 107(2):330-42. PubMed ID: 16085332 [TBL] [Abstract][Full Text] [Related]
17. [ATDC-5 growth promoted by sustained-releasing chitosan microspheres loading TGF-β1 in artificial cartilage scaffolds]. Chang Y; Liu H; Feng C; He X; Zhou X Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):664-671. PubMed ID: 28920399 [TBL] [Abstract][Full Text] [Related]
18. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Zhang Y; Wei W; Lv P; Wang L; Ma G Eur J Pharm Biopharm; 2011 Jan; 77(1):11-9. PubMed ID: 20933083 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of glutaraldehyde cross-linked O-carboxymethylchitosan microspheres for controlled delivery of pazufloxacin mesilate. Liu YF; Huang KL; Peng DM; Ding P; Li GY Int J Biol Macromol; 2007 Jun; 41(1):87-93. PubMed ID: 17292465 [TBL] [Abstract][Full Text] [Related]
20. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering. Kim SE; Park JH; Cho YW; Chung H; Jeong SY; Lee EB; Kwon IC J Control Release; 2003 Sep; 91(3):365-74. PubMed ID: 12932714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]