BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 21115738)

  • 41. The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance.
    Younes S; Bahnan W; Dimassi HI; Khalaf RA
    Microbiol Res; 2011 Jul; 166(5):430-6. PubMed ID: 20869222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin.
    Kucharíková S; Tournu H; Lagrou K; Van Dijck P; Bujdáková H
    J Med Microbiol; 2011 Sep; 60(Pt 9):1261-1269. PubMed ID: 21566087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New
    Marc G; Araniciu C; Oniga SD; Vlase L; Pîrnău A; Duma M; Măruțescu L; Chifiriuc MC; Oniga O
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30279343
    [No Abstract]   [Full Text] [Related]  

  • 44. Looking into Candida albicans infection, host response, and antifungal strategies.
    Wang Y
    Virulence; 2015; 6(4):307-8. PubMed ID: 25590793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Moonlighting proteins induce protection in a mouse model against Candida species.
    Medrano-Díaz CL; Vega-González A; Ruiz-Baca E; Moreno A; Cuéllar-Cruz M
    Microb Pathog; 2018 Nov; 124():21-29. PubMed ID: 30118801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteinous Components of Neutrophil Extracellular Traps Are Arrested by the Cell Wall Proteins of
    Karkowska-Kuleta J; Smolarz M; Seweryn-Ozog K; Satala D; Zawrotniak M; Wronowska E; Bochenska O; Kozik A; Nobbs AH; Gogol M; Rapala-Kozik M
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc Oxide Nanoparticles Inhibition of Initial Adhesion and ALS1 and ALS3 Gene Expression in Candida albicans Strains from Urinary Tract Infections.
    Hosseini SS; Ghaemi E; Noroozi A; Niknejad F
    Mycopathologia; 2019 Apr; 184(2):261-271. PubMed ID: 30903582
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation.
    Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H
    Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid.
    Zhang Y; Cai C; Yang Y; Weng L; Wang L
    J Med Microbiol; 2011 Nov; 60(Pt 11):1643-1650. PubMed ID: 21778264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of
    Bednarek A; Satala D; Zawrotniak M; Nobbs AH; Rapala-Kozik M; Kozik A
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256088
    [No Abstract]   [Full Text] [Related]  

  • 51. Fungicidal monoclonal antibody C7 binds to Candida albicans Als3.
    Brena S; Omaetxebarría MJ; Elguezabal N; Cabezas J; Moragues MD; Pontón J
    Infect Immun; 2007 Jul; 75(7):3680-2. PubMed ID: 17452471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions.
    Li F; Palecek SP
    Microbiology (Reading); 2008 Apr; 154(Pt 4):1193-1203. PubMed ID: 18375812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.
    Cavalcanti YW; Wilson M; Lewis M; Del-Bel-Cury AA; da Silva WJ; Williams DW
    Biofouling; 2016; 32(2):123-34. PubMed ID: 26795585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A proposed mechanism for the interaction between the Candida albicans Als3 adhesin and streptococcal cell wall proteins.
    Hoyer LL; Oh SH; Jones R; Cota E
    Front Microbiol; 2014; 5():564. PubMed ID: 25408685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection.
    Phan QT; Lin J; Solis NV; Eng M; Swidergall M; Wang F; Li S; Gaffen SL; Chou TF; Filler SG
    mBio; 2021 Dec; 12(6):e0271621. PubMed ID: 34724825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of Candida albicans adhesion by recombinant human antibody single-chain variable fragment specific for Als3p.
    Laforce-Nesbitt SS; Sullivan MA; Hoyer LL; Bliss JM
    FEMS Immunol Med Microbiol; 2008 Nov; 54(2):195-202. PubMed ID: 18662314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans.
    Jack AA; Daniels DE; Jepson MA; Vickerman MM; Lamont RJ; Jenkinson HF; Nobbs AH
    Microbiology (Reading); 2015 Feb; 161(Pt 2):411-421. PubMed ID: 25505189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptional Profiling of
    Uppuluri P; Busscher HJ; Chakladar J; van der Mei HC; Chaffin WL
    Front Cell Infect Microbiol; 2017; 7():311. PubMed ID: 28752078
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.
    Chandra J; Kuhn DM; Mukherjee PK; Hoyer LL; McCormick T; Ghannoum MA
    J Bacteriol; 2001 Sep; 183(18):5385-94. PubMed ID: 11514524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm-associated fruRBA operon in response to Candida albicans.
    Jesionowski AM; Mansfield JM; Brittan JL; Jenkinson HF; Vickerman MM
    Mol Oral Microbiol; 2016 Aug; 31(4):314-28. PubMed ID: 26280461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.