These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 21115813)
1. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Wilson RA; Gibson RP; Quispe CF; Littlechild JA; Talbot NJ Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21902-7. PubMed ID: 21115813 [TBL] [Abstract][Full Text] [Related]
2. Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. Badaruddin M; Holcombe LJ; Wilson RA; Wang ZY; Kershaw MJ; Talbot NJ PLoS Pathog; 2013; 9(10):e1003604. PubMed ID: 24098112 [TBL] [Abstract][Full Text] [Related]
3. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. Fernandez J; Wilson RA PLoS One; 2014; 9(1):e87300. PubMed ID: 24475267 [TBL] [Abstract][Full Text] [Related]
4. Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. Wilson RA; Jenkinson JM; Gibson RP; Littlechild JA; Wang ZY; Talbot NJ EMBO J; 2007 Aug; 26(15):3673-85. PubMed ID: 17641690 [TBL] [Abstract][Full Text] [Related]
5. Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection. Fernandez J; Wright JD; Hartline D; Quispe CF; Madayiputhiya N; Wilson RA PLoS Genet; 2012; 8(5):e1002673. PubMed ID: 22570632 [TBL] [Abstract][Full Text] [Related]
6. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Osés-Ruiz M; Sakulkoo W; Littlejohn GR; Martin-Urdiroz M; Talbot NJ Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E237-E244. PubMed ID: 28028232 [TBL] [Abstract][Full Text] [Related]
7. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416 [TBL] [Abstract][Full Text] [Related]
8. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related]
9. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy. He M; Kershaw MJ; Soanes DM; Xia Y; Talbot NJ PLoS One; 2012; 7(3):e33270. PubMed ID: 22448240 [TBL] [Abstract][Full Text] [Related]
10. FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaporthe oryzae. bin Yusof MT; Kershaw MJ; Soanes DM; Talbot NJ PLoS One; 2014; 9(6):e99760. PubMed ID: 24949933 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Kershaw MJ; Talbot NJ Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15967-72. PubMed ID: 19717456 [TBL] [Abstract][Full Text] [Related]
12. Metabolomics Analysis Identifies Sphingolipids as Key Signaling Moieties in Appressorium Morphogenesis and Function in Magnaporthe oryzae. Liu XH; Liang S; Wei YY; Zhu XM; Li L; Liu PP; Zheng QX; Zhou HN; Zhang Y; Mao LJ; Fernandes CM; Del Poeta M; Naqvi NI; Lin FC mBio; 2019 Aug; 10(4):. PubMed ID: 31431550 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. Soanes DM; Chakrabarti A; Paszkiewicz KH; Dawe AL; Talbot NJ PLoS Pathog; 2012 Feb; 8(2):e1002514. PubMed ID: 22346750 [TBL] [Abstract][Full Text] [Related]
14. Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity. Singh R; Dangol S; Chen Y; Choi J; Cho YS; Lee JE; Choi MO; Jwa NS Mol Cells; 2016 May; 39(5):426-38. PubMed ID: 27126515 [TBL] [Abstract][Full Text] [Related]
15. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. Foster AJ; Jenkinson JM; Talbot NJ EMBO J; 2003 Jan; 22(2):225-35. PubMed ID: 12514128 [TBL] [Abstract][Full Text] [Related]
16. The Plant Homeodomain Protein Clp1 Regulates Fungal Development, Virulence, and Autophagy Homeostasis in Magnaporthe oryzae. Wang J; Huang Z; Huang P; Wang Q; Li Y; Liu XH; Lin FC; Lu J Microbiol Spectr; 2022 Oct; 10(5):e0102122. PubMed ID: 36036638 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. Fernandez J; Marroquin-Guzman M; Wilson RA PLoS Pathog; 2014 Sep; 10(9):e1004354. PubMed ID: 25188286 [TBL] [Abstract][Full Text] [Related]
18. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. Kim S; Park SY; Kim KS; Rho HS; Chi MH; Choi J; Park J; Kong S; Park J; Goh J; Lee YH PLoS Genet; 2009 Dec; 5(12):e1000757. PubMed ID: 19997500 [TBL] [Abstract][Full Text] [Related]
19. Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease. Patkar RN; Xue YK; Shui G; Wenk MR; Naqvi NI PLoS Pathog; 2012; 8(8):e1002888. PubMed ID: 22927822 [TBL] [Abstract][Full Text] [Related]
20. Deng S; Sun W; Dong L; Cui G; Deng YZ mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736 [No Abstract] [Full Text] [Related] [Next] [New Search]