BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21115819)

  • 41. Metabolic regulation of circadian clocks.
    Haydon MJ; Hearn TJ; Bell LJ; Hannah MA; Webb AA
    Semin Cell Dev Biol; 2013 May; 24(5):414-21. PubMed ID: 23538134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How plants tell the time.
    Murtas G; Millar AJ
    Curr Opin Plant Biol; 2000 Feb; 3(1):43-6. PubMed ID: 10679446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock.
    Henriques R; Mas P
    Semin Cell Dev Biol; 2013 May; 24(5):399-406. PubMed ID: 23499867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rhythmic growth explained by coincidence between internal and external cues.
    Nozue K; Covington MF; Duek PD; Lorrain S; Fankhauser C; Harmer SL; Maloof JN
    Nature; 2007 Jul; 448(7151):358-61. PubMed ID: 17589502
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation.
    Farinas B; Mas P
    Plant J; 2011 Apr; 66(2):318-29. PubMed ID: 21205033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3,4-Dibromo-7-Azaindole Modulates Arabidopsis Circadian Clock by Inhibiting Casein Kinase 1 Activity.
    Ono A; Sato A; Fujimoto KJ; Matsuo H; Yanai T; Kinoshita T; Nakamichi N
    Plant Cell Physiol; 2019 Nov; 60(11):2360-2368. PubMed ID: 31529098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CIRCADIAN CLOCK ASSOCIATED1 transcript stability and the entrainment of the circadian clock in Arabidopsis.
    Yakir E; Hilman D; Hassidim M; Green RM
    Plant Physiol; 2007 Nov; 145(3):925-32. PubMed ID: 17873091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new role for histone demethylases in the maintenance of plant genome integrity.
    Antunez-Sanchez J; Naish M; Ramirez-Prado JS; Ohno S; Huang Y; Dawson A; Opassathian K; Manza-Mianza D; Ariel F; Raynaud C; Wibowo A; Daron J; Ueda M; Latrasse D; Slotkin RK; Weigel D; Benhamed M; Gutierrez-Marcos J
    Elife; 2020 Oct; 9():. PubMed ID: 33107825
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenetic gene regulation by plant Jumonji group of histone demethylase.
    Chen X; Hu Y; Zhou DX
    Biochim Biophys Acta; 2011 Aug; 1809(8):421-6. PubMed ID: 21419882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fbxl11 Is a Novel Negative Element of the Mammalian Circadian Clock.
    Reischl S; Kramer A
    J Biol Rhythms; 2015 Aug; 30(4):291-301. PubMed ID: 26037310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock.
    Knight H; Thomson AJ; McWatters HG
    Plant Physiol; 2008 Sep; 148(1):293-303. PubMed ID: 18614706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana.
    Greenwood M; Domijan M; Gould PD; Hall AJW; Locke JCW
    PLoS Biol; 2019 Aug; 17(8):e3000407. PubMed ID: 31415556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways.
    Salathia N; Davis SJ; Lynn JR; Michaels SD; Amasino RM; Millar AJ
    BMC Plant Biol; 2006 May; 6():10. PubMed ID: 16737527
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emerging design principles in the Arabidopsis circadian clock.
    Carré I; Veflingstad SR
    Semin Cell Dev Biol; 2013 May; 24(5):393-8. PubMed ID: 23597453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Martin-Tryon EL; Kreps JA; Harmer SL
    Plant Physiol; 2007 Jan; 143(1):473-86. PubMed ID: 17098855
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.
    Portolés S; Más P
    PLoS Genet; 2010 Nov; 6(11):e1001201. PubMed ID: 21079791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arabidopsis circadian clock and photoperiodism: time to think about location.
    Imaizumi T
    Curr Opin Plant Biol; 2010 Feb; 13(1):83-9. PubMed ID: 19836294
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions.
    Shalit-Kaneh A; Kumimoto RW; Filkov V; Harmer SL
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7147-7152. PubMed ID: 29915068
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.
    Filo J; Wu A; Eliason E; Richardson T; Thines BC; Harmon FG
    Plant Signal Behav; 2015; 10(3):e992707. PubMed ID: 25738547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.