BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 21115945)

  • 1. Ankle training with a robotic device improves hemiparetic gait after a stroke.
    Forrester LW; Roy A; Krebs HI; Macko RF
    Neurorehabil Neural Repair; 2011 May; 25(4):369-77. PubMed ID: 21115945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-specific ankle robotics gait training after stroke: a randomized pilot study.
    Forrester LW; Roy A; Hafer-Macko C; Krebs HI; Macko RF
    J Neuroeng Rehabil; 2016 Jun; 13(1):51. PubMed ID: 27255156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke.
    Roy A; Forrester LW; Macko RF
    J Rehabil Res Dev; 2011; 48(4):417-29. PubMed ID: 21674391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study.
    Forrester LW; Roy A; Krywonis A; Kehs G; Krebs HI; Macko RF
    Neurorehabil Neural Repair; 2014 Sep; 28(7):678-87. PubMed ID: 24515923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation.
    Awad LN; Esquenazi A; Francisco GE; Nolan KJ; Jayaraman A
    J Neuroeng Rehabil; 2020 Jun; 17(1):80. PubMed ID: 32552775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke.
    Mirelman A; Bonato P; Deutsch JE
    Stroke; 2009 Jan; 40(1):169-74. PubMed ID: 18988916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study.
    Stein J; Bishop L; Stein DJ; Wong CK
    Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.
    Goodman RN; Rietschel JC; Roy A; Jung BC; Diaz J; Macko RF; Forrester LW
    J Rehabil Res Dev; 2014; 51(2):213-27. PubMed ID: 24933720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of treadmill training with partial body weight support and the proprioceptive neuromuscular facilitation method on hemiparetic gait: a randomized controlled study.
    Ribeiro T; Britto H; Oliveira D; Silva E; Galvão E; Lindquist A
    Eur J Phys Rehabil Med; 2013 Aug; 49(4):451-61. PubMed ID: 23172402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of robot-assisted gait training using the Welwalk on gait independence for individuals with hemiparetic stroke: an assessor-blinded, multicenter randomized controlled trial.
    Hirano S; Saitoh E; Imoto D; Ii T; Tsunoda T; Otaka Y
    J Neuroeng Rehabil; 2024 May; 21(1):76. PubMed ID: 38745235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study.
    Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V
    J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does overground robotic gait training improve non-motor outcomes in patients with chronic stroke? Findings from a pilot study.
    De Luca R; Maresca G; Balletta T; Cannavò A; Leonardi S; Latella D; Maggio MG; Portaro S; Naro A; Calabrò RS
    J Clin Neurosci; 2020 Nov; 81():240-245. PubMed ID: 33222923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of body mass index on hemiparetic gait.
    Sheffler LR; Bailey SN; Gunzler D; Chae J
    PM R; 2014 Oct; 6(10):908-13. PubMed ID: 24713181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of treadmill training with load addition on non-paretic lower limb on gait parameters after stroke: A randomized controlled clinical trial.
    Ribeiro TS; Silva EMGS; Silva IAP; Costa MFP; Cavalcanti FAC; Lindquist AR
    Gait Posture; 2017 May; 54():229-235. PubMed ID: 28351743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery.
    Sullivan KJ; Knowlton BJ; Dobkin BH
    Arch Phys Med Rehabil; 2002 May; 83(5):683-91. PubMed ID: 11994808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke.
    Khanna I; Roy A; Rodgers MM; Krebs HI; Macko RM; Forrester LW
    J Neuroeng Rehabil; 2010 May; 7():23. PubMed ID: 20492698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wearable resistive robot facilitates locomotor adaptations during gait.
    Washabaugh EP; Krishnan C
    Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of robotic-assisted ankle training on gait in stroke participants: A case series study.
    Varas-Diaz G; Cordo P; Dusane S; Bhatt T
    Physiother Theory Pract; 2022 Nov; 38(13):2973-2982. PubMed ID: 34424126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.