These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 21116042)

  • 1. Improved algorithms for finding gene teams and constructing gene team trees.
    Wang BF; Lin CH
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1258-72. PubMed ID: 21116042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing a Gene Team Tree in Almost O (n lg n) Time.
    Wang BF; Lin CH; Yang IT
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):142-53. PubMed ID: 26355514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new efficient algorithm for the gene-team problem on general sequences.
    Wang BF; Kuo CC; Liu SJ; Lin CH
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):330-44. PubMed ID: 22282907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene team tree: a hierarchical representation of gene teams for all gap lengths.
    Zhang M; Leong HW
    J Comput Biol; 2009 Oct; 16(10):1383-98. PubMed ID: 19803736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Efficient Algorithm for the Frequent Gene Team Problem.
    Wang BF
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):588-598. PubMed ID: 27959819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Output-sensitive algorithms for finding the nested common intervals of two general sequences.
    Wang BF
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):548-59. PubMed ID: 21844635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene teams: a new formalization of gene clusters for comparative genomics.
    Luc N; Risler JL; Bergeron A; Raffinot M
    Comput Biol Chem; 2003 Feb; 27(1):59-67. PubMed ID: 12798040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying conserved gene clusters in the presence of homology families.
    He X; Goldwasser MH
    J Comput Biol; 2005; 12(6):638-56. PubMed ID: 16108708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene proximity analysis across whole genomes via PQ trees.
    Landau GM; Parida L; Weimann O
    J Comput Biol; 2005 Dec; 12(10):1289-306. PubMed ID: 16379535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient method for exploring the space of gene tree/species tree reconciliations in a probabilistic framework.
    Doyon JP; Hamel S; Chauve C
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):26-39. PubMed ID: 21464510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene family evolution by duplication, speciation, and loss.
    Chauve C; Doyon JP; El-Mabrouk N
    J Comput Biol; 2008 Oct; 15(8):1043-62. PubMed ID: 18781833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A faster 1.375-approximation algorithm for sorting by transpositions.
    Cunha LF; Kowada LA; Hausen Rde A; de Figueiredo CM
    J Comput Biol; 2015 Nov; 22(11):1044-56. PubMed ID: 26383040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified approach for reconstructing ancient gene clusters.
    Stoye J; Wittler R
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):387-400. PubMed ID: 19644167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the structure of syntenic distance.
    Liben-Nowell D
    J Comput Biol; 2001; 8(1):53-67. PubMed ID: 11339906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithms for genome-scale phylogenetics using gene tree parsimony.
    Bansal MS; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):939-56. PubMed ID: 24334388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approximation algorithm for the minimum breakpoint linearization problem.
    Chen X; Cui Y
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):401-9. PubMed ID: 19644168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fast and Exact Algorithm for the Exemplar Breakpoint Distance.
    Shao M; Moret BM
    J Comput Biol; 2016 May; 23(5):337-46. PubMed ID: 26953781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Efficient Algorithm for the All Sorting Reversals Problem with No Bad Components.
    Wang BF
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):599-609. PubMed ID: 26353380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCJ: a breakpoint-like distance that simplifies several rearrangement problems.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1318-29. PubMed ID: 21339538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.
    Schulz T; Stoye J; Doerr D
    BMC Genomics; 2018 May; 19(Suppl 5):308. PubMed ID: 29745835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.