These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 21116609)
1. Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Curtis TM; Hamilton R; Yong PH; McVicar CM; Berner A; Pringle R; Uchida K; Nagai R; Brockbank S; Stitt AW Diabetologia; 2011 Mar; 54(3):690-8. PubMed ID: 21116609 [TBL] [Abstract][Full Text] [Related]
2. Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy. Yong PH; Zong H; Medina RJ; Limb GA; Uchida K; Stitt AW; Curtis TM Mol Vis; 2010 Dec; 16():2524-38. PubMed ID: 21151599 [TBL] [Abstract][Full Text] [Related]
3. Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Berner AK; Brouwers O; Pringle R; Klaassen I; Colhoun L; McVicar C; Brockbank S; Curry JW; Miyata T; Brownlee M; Schlingemann RO; Schalkwijk C; Stitt AW Diabetologia; 2012 Mar; 55(3):845-54. PubMed ID: 22143324 [TBL] [Abstract][Full Text] [Related]
4. Müller glial dysfunction during diabetic retinopathy in rats is reduced by the acrolein-scavenging drug, 2-hydrazino-4,6-dimethylpyrimidine. McDowell RE; Barabas P; Augustine J; Chevallier O; McCarron P; Chen M; McGeown JG; Curtis TM Diabetologia; 2018 Dec; 61(12):2654-2667. PubMed ID: 30112688 [TBL] [Abstract][Full Text] [Related]
5. Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE). Zong H; Ward M; Madden A; Yong PH; Limb GA; Curtis TM; Stitt AW Diabetologia; 2010 Dec; 53(12):2656-66. PubMed ID: 20835858 [TBL] [Abstract][Full Text] [Related]
6. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Stitt A; Gardiner TA; Alderson NL; Canning P; Frizzell N; Duffy N; Boyle C; Januszewski AS; Chachich M; Baynes JW; Thorpe SR Diabetes; 2002 Sep; 51(9):2826-32. PubMed ID: 12196477 [TBL] [Abstract][Full Text] [Related]
7. Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Müller cells. Thompson K; Chen J; Luo Q; Xiao Y; Cummins TR; Bhatwadekar AD PLoS One; 2018; 13(2):e0193280. PubMed ID: 29474462 [TBL] [Abstract][Full Text] [Related]
8. Diabetes Impairs the Aldehyde Detoxifying Capacity of the Retina. McDowell RE; McGahon MK; Augustine J; Chen M; McGeown JG; Curtis TM Invest Ophthalmol Vis Sci; 2016 Sep; 57(11):4762-71. PubMed ID: 27618414 [TBL] [Abstract][Full Text] [Related]
9. Advanced glycation and advanced lipoxidation: possible role in initiation and progression of diabetic retinopathy. Stitt AW; Frizzell N; Thorpe SR Curr Pharm Des; 2004; 10(27):3349-60. PubMed ID: 15544520 [TBL] [Abstract][Full Text] [Related]
10. Receptor for advanced glycation end product expression in experimental diabetic retinopathy. Wang Y; Vom Hagen F; Pfister F; Bierhaus A; Feng Y; Gans R; Hammes HP Ann N Y Acad Sci; 2008 Apr; 1126():42-5. PubMed ID: 18448794 [TBL] [Abstract][Full Text] [Related]
11. Advanced glycation end products and diabetic retinopathy. Chen M; Curtis TM; Stitt AW Curr Med Chem; 2013; 20(26):3234-40. PubMed ID: 23745547 [TBL] [Abstract][Full Text] [Related]
12. Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Ly A; Yee P; Vessey KA; Phipps JA; Jobling AI; Fletcher EL Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9316-26. PubMed ID: 22110070 [TBL] [Abstract][Full Text] [Related]
13. The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy. Augustine J; Troendle EP; Barabas P; McAleese CA; Friedel T; Stitt AW; Curtis TM Front Endocrinol (Lausanne); 2020; 11():621938. PubMed ID: 33679605 [TBL] [Abstract][Full Text] [Related]
14. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Barber AJ; Antonetti DA; Gardner TW Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3561-8. PubMed ID: 11006253 [TBL] [Abstract][Full Text] [Related]
15. Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Fukuda M; Nakanishi Y; Fuse M; Yokoi N; Hamada Y; Fukagawa M; Negi A; Nakamura M Exp Eye Res; 2010 Jan; 90(1):17-25. PubMed ID: 19748503 [TBL] [Abstract][Full Text] [Related]
16. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Metz TO; Alderson NL; Thorpe SR; Baynes JW Arch Biochem Biophys; 2003 Nov; 419(1):41-9. PubMed ID: 14568007 [TBL] [Abstract][Full Text] [Related]
17. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Feit-Leichman RA; Kinouchi R; Takeda M; Fan Z; Mohr S; Kern TS; Chen DF Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4281-7. PubMed ID: 16249509 [TBL] [Abstract][Full Text] [Related]
18. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Murata T; Nagai R; Ishibashi T; Inomuta H; Ikeda K; Horiuchi S Diabetologia; 1997 Jul; 40(7):764-9. PubMed ID: 9243096 [TBL] [Abstract][Full Text] [Related]
19. Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. McVicar CM; Hamilton R; Colhoun LM; Gardiner TA; Brines M; Cerami A; Stitt AW Diabetes; 2011 Nov; 60(11):2995-3005. PubMed ID: 21911748 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. Gardiner TA; Anderson HR; Stitt AW J Pathol; 2003 Oct; 201(2):328-33. PubMed ID: 14517851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]