These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21116704)

  • 1. Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study.
    Fritsch CC; Langowski J
    Chromosome Res; 2011 Jan; 19(1):63-81. PubMed ID: 21116704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity of model interphase chromosomes.
    Valet M; Rosa A
    J Chem Phys; 2014 Dec; 141(24):245101. PubMed ID: 25554185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion in the interphase cell nucleus: the effect of spatial correlations of chromatin.
    Fritsch CC; Langowski J
    J Chem Phys; 2010 Jul; 133(2):025101. PubMed ID: 20632774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical study of the globular organisation of interphase chromosomes.
    Eidelman Y; Andreev SG
    Radiat Prot Dosimetry; 2002; 99(1-4):217-8. PubMed ID: 12194288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How proteins squeeze through polymer networks: a Cartesian lattice study.
    Wedemeier A; Merlitz H; Wu CX; Langowski J
    J Chem Phys; 2009 Aug; 131(6):064905. PubMed ID: 19691409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microrheology of interphase chromosomes with spatial constraints: a computational study.
    Papale A; Rosa A
    Phys Biol; 2019 Sep; 16(6):066002. PubMed ID: 31394517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations.
    Rosa A
    Methods Mol Biol; 2022; 2301():235-258. PubMed ID: 34415539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice kinetic Monte Carlo simulations of convective-diffusive systems.
    Flamm MH; Diamond SL; Sinno T
    J Chem Phys; 2009 Mar; 130(9):094904. PubMed ID: 19275421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling diffusional transport in the interphase cell nucleus.
    Wedemeier A; Merlitz H; Wu CX; Langowski J
    J Chem Phys; 2007 Jul; 127(4):045102. PubMed ID: 17672725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Globular model of interphase chromosome and intrachromosomal exchange aberrations].
    Andreev SG; Eĭdel'man IuA
    Radiats Biol Radioecol; 1999; 39(1):10-20. PubMed ID: 10347593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interphase chromosomes undergo constrained diffusional motion in living cells.
    Marshall WF; Straight A; Marko JF; Swedlow J; Dernburg A; Belmont A; Murray AW; Agard DA; Sedat JW
    Curr Biol; 1997 Dec; 7(12):930-9. PubMed ID: 9382846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces.
    Hancock R
    Semin Cell Dev Biol; 2007 Oct; 18(5):668-75. PubMed ID: 17904880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosome compaction and chromatin stiffness enhance diffusive loop extrusion by slip-link proteins.
    Bonato A; Brackley CA; Johnson J; Michieletto D; Marenduzzo D
    Soft Matter; 2020 Mar; 16(9):2406-2414. PubMed ID: 32067018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropic organization of interphase chromosomes.
    Cook PR; Marenduzzo D
    J Cell Biol; 2009 Sep; 186(6):825-34. PubMed ID: 19752020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of chromatin stretching.
    Aumann F; Lankas F; Caudron M; Langowski J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041927. PubMed ID: 16711856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalization of interphase chromosomes observed in simulation and experiment.
    Münkel C; Eils R; Dietzel S; Zink D; Mehring C; Wedemann G; Cremer T; Langowski J
    J Mol Biol; 1999 Jan; 285(3):1053-65. PubMed ID: 9887267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Looping probabilities in model interphase chromosomes.
    Rosa A; Becker NB; Everaers R
    Biophys J; 2010 Jun; 98(11):2410-9. PubMed ID: 20513384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.