BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 21116779)

  • 21. Biopharmaceutical properties of uricase conjugated to neutral and amphiphilic polymers.
    Caliceti P; Schiavon O; Veronese FM
    Bioconjug Chem; 1999; 10(4):638-46. PubMed ID: 10411462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocapsule assemblies as effective enzyme delivery systems against hyperuricemia.
    Xiong H; Zhou Y; Zhou Q; He D; Deng X; Sun Q; Zhang J
    Nanomedicine; 2016 Aug; 12(6):1557-66. PubMed ID: 27013130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pegloticase, a polyethylene glycol conjugate of uricase for the potential intravenous treatment of gout.
    Biggers K; Scheinfeld N
    Curr Opin Investig Drugs; 2008 Apr; 9(4):422-9. PubMed ID: 18393109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a uricase from Bacillus fastidious A.T.C.C. 26904 and its application to serum uric acid assay by a patented kinetic uricase method.
    Zhao Y; Zhao L; Yang G; Tao J; Bu Y; Liao F
    Biotechnol Appl Biochem; 2006 Sep; 45(Pt 2):75-80. PubMed ID: 16689679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Therapeutic Uricase with Reduced Immunogenicity Risk and Improved Development Properties.
    Nyborg AC; Ward C; Zacco A; Chacko B; Grinberg L; Geoghegan JC; Bean R; Wendeler M; Bartnik F; O'Connor E; Gruia F; Iyer V; Feng H; Roy V; Berge M; Miner JN; Wilson DM; Zhou D; Nicholson S; Wilker C; Wu CY; Wilson S; Jermutus L; Wu H; Owen DA; Osbourn J; Coats S; Baca M
    PLoS One; 2016; 11(12):e0167935. PubMed ID: 28002433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel drug discovery strategies for gout.
    Richette P; Garay R
    Expert Opin Drug Discov; 2013 Feb; 8(2):183-9. PubMed ID: 23231400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A widely distributed gene cluster compensates for uricase loss in hominids.
    Liu Y; Jarman JB; Low YS; Augustijn HE; Huang S; Chen H; DeFeo ME; Sekiba K; Hou BH; Meng X; Weakley AM; Cabrera AV; Zhou Z; van Wezel G; Medema MH; Ganesan C; Pao AC; Gombar S; Dodd D
    Cell; 2023 Aug; 186(16):3400-3413.e20. PubMed ID: 37541197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypouricaemic effect after oral administration in chickens of polyethylene glycol-modified uricase entrapped in liposomes.
    Nishida Y; Kamatani N; Miyamoto T
    J Pharm Pharmacol; 1984 May; 36(5):354-5. PubMed ID: 6145782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacokinetics and pharmacodynamics of febuxostat (TMX-67), a non-purine selective inhibitor of xanthine oxidase/xanthine dehydrogenase (NPSIXO) in patients with gout and/or hyperuricemia.
    Komoriya K; Hoshide S; Takeda K; Kobayashi H; Kubo J; Tsuchimoto M; Nakachi T; Yamanaka H; Kamatani N
    Nucleosides Nucleotides Nucleic Acids; 2004 Oct; 23(8-9):1119-22. PubMed ID: 15571213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Update on emerging urate-lowering therapies.
    Chohan S; Becker MA
    Curr Opin Rheumatol; 2009 Mar; 21(2):143-9. PubMed ID: 19339925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of large aggregated uricases and PEG diol on accelerated blood clearance of PEGylated canine uricase.
    Zhang C; Fan K; Ma X; Wei D
    PLoS One; 2012; 7(6):e39659. PubMed ID: 22745806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dual actions of morin (3,5,7,2',4'-pentahydroxyflavone) as a hypouricemic agent: uricosuric effect and xanthine oxidase inhibitory activity.
    Yu Z; Fong WP; Cheng CH
    J Pharmacol Exp Ther; 2006 Jan; 316(1):169-75. PubMed ID: 16169936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperuricemia and gout: new insights into pathogenesis and treatment.
    Pillinger MH; Rosenthal P; Abeles AM
    Bull NYU Hosp Jt Dis; 2007; 65(3):215-21. PubMed ID: 17922673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uricase-deficient rats with similarly stable serum uric acid to human's are sensitive model animals for studying hyperuricemia.
    Gao Y; Yu Y; Qin W; Fan N; Qi Y; Chen H; Duan W
    PLoS One; 2022; 17(3):e0264696. PubMed ID: 35239728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of antihyperuricemic effect of Phyllanthus niruri and its lignan constituents.
    Murugaiyah V; Chan KL
    J Ethnopharmacol; 2009 Jul; 124(2):233-9. PubMed ID: 19397979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging therapies in the long-term management of hyperuricaemia and gout.
    Stamp LK; O'Donnell JL; Chapman PT
    Intern Med J; 2007 Apr; 37(4):258-66. PubMed ID: 17388867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rationalization design, soluble expression and PEG modification of highly active recombinant human-porcine uricase mutant protein.
    Tong M; Wang S; Luan J; Xie Q; Wang L; Shen X; Xiong S
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131989. PubMed ID: 38697425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Febuxostat--treatment for hyperuricemia and gout?
    Moreland LW
    N Engl J Med; 2005 Dec; 353(23):2505-7. PubMed ID: 16339099
    [No Abstract]   [Full Text] [Related]  

  • 39. An amperomertic uric acid biosensor based on immobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film.
    Bhambi M; Sumana G; Malhotra BD; Pundir CS
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Aug; 38(4):178-85. PubMed ID: 20367113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacodynamic analysis of intravenous recombinant urate oxidase using an indirect pharmacological response model in healthy subjects.
    Cai NF; Cheng ZN; Zi Y; Luo X; Guo X; Liu Z; Zheng LY
    Acta Pharmacol Sin; 2014 Nov; 35(11):1447-52. PubMed ID: 25283504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.