These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21116833)

  • 21. Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS.
    Gomez MD; Ventimilla D; Sacristan R; Perez-Amador MA
    Plant Physiol; 2016 Dec; 172(4):2403-2415. PubMed ID: 27794102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Floral biology of Ziziphus mauritiana (Rhamnaceae).
    Tel-Zur N; Schneider B
    Sex Plant Reprod; 2009 Jun; 22(2):73-85. PubMed ID: 20033458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sens. str.
    Tokuoka T; Tobe H
    J Plant Res; 2006 Nov; 119(6):599-616. PubMed ID: 16937025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of High Temperature on Embryological Development and Hormone Profile in Flowers and Leaves of Common Buckwheat (
    Płażek A; Słomka A; Kopeć P; Dziurka M; Hornyák M; Sychta K; Pastuszak J; Dubert AF
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30959807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arabinogalactan proteins mediate intercellular crosstalk in the ovule of apple flowers.
    Losada JM; Herrero M
    Plant Reprod; 2019 Sep; 32(3):291-305. PubMed ID: 31049682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rosid radiation and the rapid rise of angiosperm-dominated forests.
    Wang H; Moore MJ; Soltis PS; Bell CD; Brockington SF; Alexandre R; Davis CC; Latvis M; Manchester SR; Soltis DE
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3853-8. PubMed ID: 19223592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology.
    Schwarzbach AE; Ricklefs RE
    Am J Bot; 2000 Apr; 87(4):547-64. PubMed ID: 10766727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the integuments in pollen tube guidance in flowering plants.
    Lora J; Laux T; Hormaza JI
    New Phytol; 2019 Jan; 221(2):1074-1089. PubMed ID: 30169910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oldest record of Trimeniaceae from the early Cretaceous of northern Japan.
    Yamada T; Nishida H; Umebayashi M; Uemura K; Kato M
    BMC Evol Biol; 2008 May; 8():135. PubMed ID: 18462503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesozoic cupules and the origin of the angiosperm second integument.
    Shi G; Herrera F; Herendeen PS; Clark EG; Crane PR
    Nature; 2021 Jun; 594(7862):223-226. PubMed ID: 34040260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetics, ancestral state reconstruction, and a new infrafamilial classification of the pantropical Ochnaceae (Medusagynaceae, Ochnaceae s.str., Quiinaceae) based on five DNA regions.
    Schneider JV; Bissiengou P; Amaral Mdo C; Tahir A; Fay MF; Thines M; Sosef MS; Zizka G; Chatrou LW
    Mol Phylogenet Evol; 2014 Sep; 78():199-214. PubMed ID: 24862223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pleistocene radiation of the serpentine-adapted genus Hesperolinon and other divergence times in Linaceae (Malpighiales).
    Schneider AC; Freyman WA; Guilliams CM; Springer YP; Baldwin BG
    Am J Bot; 2016 Feb; 103(2):221-32. PubMed ID: 26851267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological diversity and evolution of Centrolepidaceae (Poales), a species-poor clade with diverse body plans and developmental patterns.
    Sokoloff DD; Remizowa MV; Barrett MD; Conran JG; Rudall PJ
    Am J Bot; 2015 Aug; 102(8):1219-49. PubMed ID: 26290547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ovules and seeds in Euphorbioideae (Euphorbiaceae): structure and systematic implications.
    Tokuoka T; Tobe H
    J Plant Res; 2002 Oct; 115(5):361-74. PubMed ID: 12579361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan.
    Takahashi M; Herendeen PS; Xiao X
    J Plant Res; 2017 Sep; 130(5):809-826. PubMed ID: 28497291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Embryo sac, endosperm, and seed of Nemophila (Boraginaceae) relative to taxonomy, with a remark on embryogeny in Pholistoma.
    Berg RY
    Am J Bot; 2009 Mar; 96(3):565-79. PubMed ID: 21628213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anther and ovule development of Clematis serratifolia (Ranunculaceae)-with new formation types in megaspore and nucellus.
    Yang Y; Sun J; Guo X; Wang K; Liu Q; Liu Q
    PLoS One; 2020; 15(10):e0240432. PubMed ID: 33057445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Embryology of the Theaceae - anther and ovule development of Camellia, Franklinia, and Schima.
    Tsou C
    Am J Bot; 1997 Mar; 84(3):369. PubMed ID: 21708590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Female flower and cupule structure in Balanopaceae, an enigmatic rosid family.
    Sutter DM; Endress PK
    Ann Bot; 2003 Sep; 92(3):459-69. PubMed ID: 12930731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embryogenesis and seed development in Sinomanglietia glauca (Magnoliaceae).
    Xiao D; Yuan Z
    J Plant Res; 2006 Mar; 119(2):163-6. PubMed ID: 16463067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.