These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21116930)

  • 1. Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes.
    Koide M; Nystoriak MA; Brayden JE; Wellman GC
    Acta Neurochir Suppl; 2011; 110(Pt 1):145-50. PubMed ID: 21116930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage.
    Ishiguro M; Wellman TL; Honda A; Russell SR; Tranmer BI; Wellman GC
    Circ Res; 2005 Mar; 96(4):419-26. PubMed ID: 15692089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone.
    Koide M; Nystoriak MA; Krishnamoorthy G; O'Connor KP; Bonev AD; Nelson MT; Wellman GC
    J Cereb Blood Flow Metab; 2011 Jan; 31(1):3-16. PubMed ID: 20736958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ sparks and their function in human cerebral arteries.
    Wellman GC; Nathan DJ; Saundry CM; Perez G; Bonev AD; Penar PL; Tranmer BI; Nelson MT
    Stroke; 2002 Mar; 33(3):802-8. PubMed ID: 11872907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage.
    Wellman GC
    Neurol Res; 2006 Oct; 28(7):690-702. PubMed ID: 17164032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravascular pressure regulates local and global Ca(2+) signaling in cerebral artery smooth muscle cells.
    Jaggar JH
    Am J Physiol Cell Physiol; 2001 Aug; 281(2):C439-48. PubMed ID: 11443043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent Ca2+ currents contribute to spontaneous Ca2+ waves in rabbit corpus cavernosum myocytes.
    McCloskey C; Cagney V; Large R; Hollywood M; Sergeant G; McHale N; Thornbury K
    J Sex Med; 2009 Nov; 6(11):3019-31. PubMed ID: 19694931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage dependence of Ca2+ sparks in intact cerebral arteries.
    Jaggar JH; Stevenson AS; Nelson MT
    Am J Physiol; 1998 Jun; 274(6):C1755-61. PubMed ID: 9611142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice.
    Rueda A; Fernández-Velasco M; Benitah JP; Gómez AM
    PLoS One; 2013; 8(1):e53321. PubMed ID: 23301060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization.
    Nystoriak MA; O'Connor KP; Sonkusare SK; Brayden JE; Nelson MT; Wellman GC
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H803-12. PubMed ID: 21148767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between L-type Ca2+ current and unitary sarcoplasmic reticulum Ca2+ release events in rat ventricular myocytes.
    Collier ML; Thomas AP; Berlin JR
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):117-28. PubMed ID: 10066927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of voltage-dependent calcium channel currents in basilar artery smooth muscle cells at early stage of subarachnoid hemorrhage in a rabbit model.
    Shi X; Fu Y; Liao D; Chen Y; Liu J
    PLoS One; 2014; 9(1):e84129. PubMed ID: 24392110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage.
    Jahromi BS; Aihara Y; Ai J; Zhang ZD; Weyer G; Nikitina E; Yassari R; Houamed KM; Macdonald RL
    J Vasc Res; 2008; 45(5):402-15. PubMed ID: 18401179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation.
    Miriel VA; Mauban JR; Blaustein MP; Wier WG
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):815-24. PubMed ID: 10420017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells.
    Cheng X; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2309-19. PubMed ID: 16428350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCa channel insensitivity to Ca2+ sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells.
    Li A; Adebiyi A; Leffler CW; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1118-25. PubMed ID: 16603686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAH-induced suppression of voltage-gated K(+) (K (V)) channel currents in parenchymal arteriolar myocytes involves activation of the HB-EGF/EGFR pathway.
    Koide M; Wellman GC
    Acta Neurochir Suppl; 2013; 115():179-84. PubMed ID: 22890666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium sparks in human coronary artery smooth muscle cells resolved by confocal imaging.
    Fürstenau M; Löhn M; Ried C; Luft FC; Haller H; Gollasch M
    J Hypertens; 2000 Sep; 18(9):1215-22. PubMed ID: 10994752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.