These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 21117131)
1. Fluorine-protein interactions and ¹⁹F NMR isotropic chemical shifts: An empirical correlation with implications for drug design. Dalvit C; Vulpetti A ChemMedChem; 2011 Jan; 6(1):104-14. PubMed ID: 21117131 [TBL] [Abstract][Full Text] [Related]
2. Intermolecular and intramolecular hydrogen bonds involving fluorine atoms: implications for recognition, selectivity, and chemical properties. Dalvit C; Vulpetti A ChemMedChem; 2012 Feb; 7(2):262-72. PubMed ID: 22262517 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field. Carosati E; Sciabola S; Cruciani G J Med Chem; 2004 Oct; 47(21):5114-25. PubMed ID: 15456255 [TBL] [Abstract][Full Text] [Related]
4. Fluorine as a hydrogen-bond acceptor: experimental evidence and computational calculations. Dalvit C; Invernizzi C; Vulpetti A Chemistry; 2014 Aug; 20(35):11058-68. PubMed ID: 25044441 [TBL] [Abstract][Full Text] [Related]
5. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides. Cheng F; Sun H; Zhang Y; Mukkamala D; Oldfield E J Am Chem Soc; 2005 Sep; 127(36):12544-54. PubMed ID: 16144402 [TBL] [Abstract][Full Text] [Related]
6. Calculation of fluorine chemical shift tensors for the interpretation of oriented (19)F-NMR spectra of gramicidin A in membranes. Sternberg U; Klipfel M; Grage SL; Witter R; Ulrich AS Phys Chem Chem Phys; 2009 Aug; 11(32):7048-60. PubMed ID: 19652840 [TBL] [Abstract][Full Text] [Related]
7. Fluorine bonding--how does it work in protein-ligand interactions? Zhou P; Zou J; Tian F; Shang Z J Chem Inf Model; 2009 Oct; 49(10):2344-55. PubMed ID: 19788294 [TBL] [Abstract][Full Text] [Related]
8. Paramagnetic perturbation of the 19F NMR chemical shift in fluorinated cysteine by O2: a theoretical study. Li X; Rinkevicius Z; Tu Y; Tian H; Agren H J Phys Chem B; 2009 Aug; 113(31):10916-22. PubMed ID: 19606811 [TBL] [Abstract][Full Text] [Related]
9. Combined use of computational chemistry, NMR screening, and X-ray crystallography for identification and characterization of fluorophilic protein environments. Vulpetti A; Schiering N; Dalvit C Proteins; 2010 Dec; 78(16):3281-91. PubMed ID: 20886466 [TBL] [Abstract][Full Text] [Related]
10. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening. Dalvit C; Vulpetti A Chemistry; 2016 May; 22(22):7592-601. PubMed ID: 27112430 [TBL] [Abstract][Full Text] [Related]
11. Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins. Tengel T; Fex T; Emtenas H; Almqvist F; Sethson I; Kihlberg J Org Biomol Chem; 2004 Mar; 2(5):725-31. PubMed ID: 14985813 [TBL] [Abstract][Full Text] [Related]
12. Prediction of fluorine chemical shifts in proteins. Gregory DH; Gerig JT Biopolymers; 1991 Jun; 31(7):845-58. PubMed ID: 1912343 [TBL] [Abstract][Full Text] [Related]
13. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Sklenak S; Dedecek J; Li C; Wichterlová B; Gábová V; Sierka M; Sauer J Phys Chem Chem Phys; 2009 Feb; 11(8):1237-47. PubMed ID: 19209368 [TBL] [Abstract][Full Text] [Related]
14. Cross-correlated (19)F relaxation measurements for the study of fluorinated ligand-receptor interactions. Peng JW J Magn Reson; 2001 Nov; 153(1):32-47. PubMed ID: 11700079 [TBL] [Abstract][Full Text] [Related]
15. Quantifying weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl: a combined computational and experimental investigation of NMR chemical shifts in the solid state. Uldry AC; Griffin JM; Yates JR; Pérez-Torralba M; María MD; Webber AL; Beaumont ML; Samoson A; Claramunt RM; Pickard CJ; Brown SP J Am Chem Soc; 2008 Jan; 130(3):945-54. PubMed ID: 18166050 [TBL] [Abstract][Full Text] [Related]
16. Using the 19F NMR chemical shift anisotropy tensor to differentiate between the zigzag and chiral forms of fluorinated single-walled carbon nanotubes. Kumari A; Dorai K J Phys Chem A; 2011 Jun; 115(24):6543-50. PubMed ID: 21598917 [TBL] [Abstract][Full Text] [Related]
17. Application of fluorine NMR for structure identification of steroids. Ampt KA; Aspers RL; Jaeger M; Geutjes PE; Honing M; Wijmenga SS Magn Reson Chem; 2011 May; 49(5):221-30. PubMed ID: 21387404 [TBL] [Abstract][Full Text] [Related]
18. 3-Fluoropiperidines and N-methyl-3-fluoropiperidinium salts: the persistence of axial fluorine. Sun A; Lankin DC; Hardcastle K; Snyder JP Chemistry; 2005 Feb; 11(5):1579-91. PubMed ID: 15662680 [TBL] [Abstract][Full Text] [Related]
19. Understanding sterol-membrane interactions part I: Hartree-Fock versus DFT calculations of 13C and 1H NMR isotropic chemical shifts of sterols in solution and analysis of hydrogen-bonding effects. Jolibois F; Soubias O; Réat V; Milon A Chemistry; 2004 Nov; 10(23):5996-6004. PubMed ID: 15497135 [TBL] [Abstract][Full Text] [Related]
20. Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy. Cai M; Huang Y; Prakash O; Wen L; Dunkelbarger SP; Huang JK; Liu J; Krishnamoorthi R Biochemistry; 1996 Apr; 35(15):4784-94. PubMed ID: 8664268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]