These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2111724)

  • 1. In-vitro evaluation of a dual oxygen saturation/hematocrit intravascular fiberoptic catheter.
    Mendelson Y; Galvin JJ; Wang Y
    Biomed Instrum Technol; 1990; 24(3):199-206. PubMed ID: 2111724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical assessment of a continuous intraarterial blood gas monitoring system.
    Uchida T; Makita K; Tsunoda Y; Toyooka H; Amaha K
    Can J Anaesth; 1994 Jan; 41(1):64-70. PubMed ID: 8111948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous measurement of blood gases using a combined electrochemical and spectrophotometric sensor.
    Venkatesh B; Clutton-Brock TH; Hendry SP
    J Med Eng Technol; 1994; 18(5):165-8. PubMed ID: 7776356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility and accuracy of a fiberoptic catheter for measurement of venous oxygen saturation in newborn infants.
    van der Hoeven MA; Maertzdorf WJ; Blanco CE
    Acta Paediatr; 1995 Feb; 84(2):122-7. PubMed ID: 7756794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical evaluation of a new saturation/hematocrit monitor.
    Miller MF; Luckenbach J; Chen C
    J Extra Corpor Technol; 1992; 24(2):55-7. PubMed ID: 10171574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass.
    Mark JB; FitzGerald D; Fenton T; Fosberg AM; Camann W; Maffeo N; Winkelman J
    J Thorac Cardiovasc Surg; 1991 Sep; 102(3):431-9. PubMed ID: 1908928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a method for converting venous values of acid-base and oxygenation status to arterial values.
    Toftegaard M; Rees SE; Andreassen S
    Emerg Med J; 2009 Apr; 26(4):268-72. PubMed ID: 19307387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the EPOC and i-STAT analysers for canine blood gas and electrolyte analysis.
    West E; Bardell D; Senior JM
    J Small Anim Pract; 2014 Mar; 55(3):139-44. PubMed ID: 24428140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a portable clinical analyzer for the determination of blood gas partial pressures, electrolyte concentrations, and hematocrit in venous blood samples collected from cattle, horses, and sheep.
    Peiró JR; Borges AS; Gonçalves RC; Mendes LC
    Am J Vet Res; 2010 May; 71(5):515-21. PubMed ID: 20433376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between fetal scalp blood samples and intravascular blood pH, pO2 and oxygen saturation measurements.
    Morgan BL; Chao CR; Iyer V; Ross MG
    J Matern Fetal Neonatal Med; 2002 May; 11(5):325-8. PubMed ID: 12389674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of end-capillary PO2 with positron emission tomography.
    Alpert NM; Buxton RB; Correia JA; Katz PM; Ackerman RH
    J Cereb Blood Flow Metab; 1988 Jun; 8(3):403-10. PubMed ID: 3130382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide.
    Meruva RK; Meyerhoff ME
    Biosens Bioelectron; 1998 Feb; 13(2):201-12. PubMed ID: 9597736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of a mixed venous saturation catheter during acutely induced changes in hematocrit in humans.
    van Woerkens EC; Trouwborst A; Tenbrinck R
    Crit Care Med; 1991 Aug; 19(8):1025-9. PubMed ID: 1860326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicentre evaluation of the blood gas-electrolyte-analyser "BGE".
    Barth E; Müller-Plathe O; Haeckel R; Römer M; Keller HE
    Eur J Clin Chem Clin Biochem; 1991 Apr; 29(4):281-92. PubMed ID: 1907856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a fiberoptic blood gas monitor in neonates with congenital heart disease.
    Raake JL; Taeed R; Manning P; Pearl J; Schwartz SM; Nelson DP
    Respir Care; 2000 Sep; 45(9):1105-12. PubMed ID: 10980102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflectance measurements of hematocrit and oxyhemoglobin saturation.
    Steinke JM; Shepherd AP
    Am J Physiol; 1987 Jul; 253(1 Pt 2):H147-53. PubMed ID: 3605361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical validation of a continuous intravascular neonatal blood gas sensor introduced through an umbilical artery catheter.
    Meyers PA; Worwa C; Trusty R; Mammel MC
    Respir Care; 2002 Jun; 47(6):682-7. PubMed ID: 12036438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of blood oxygen saturation using a multichannel fiberoptic oximeter-densitometer.
    Sekelj P; Retfalvi S; Lavoie A
    Can J Physiol Pharmacol; 1977 Jun; 55(3):585-94. PubMed ID: 884614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous measurement of hematocrit using an intravascular catheter equipped with a fiberoptic transmission cell.
    Fukushima H
    J Anesth; 1998 Jun; 12(2):87-94. PubMed ID: 28921249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.