These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2111732)

  • 1. In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor.
    Hochstrasser M; Varshavsky A
    Cell; 1990 May; 61(4):697-708. PubMed ID: 2111732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The short-lived MAT alpha 2 transcriptional regulator is ubiquitinated in vivo.
    Hochstrasser M; Ellison MJ; Chau V; Varshavsky A
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4606-10. PubMed ID: 1647011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of the yeast MAT alpha 2 transcriptional regulator is mediated by the proteasome.
    Richter-Ruoff B; Wolf DH; Hochstrasser M
    FEBS Lett; 1994 Oct; 354(1):50-2. PubMed ID: 7957900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondissociation of GAL4 and GAL80 in vivo after galactose induction.
    Leuther KK; Johnston SA
    Science; 1992 May; 256(5061):1333-5. PubMed ID: 1598579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 repressor.
    Chen P; Johnson P; Sommer T; Jentsch S; Hochstrasser M
    Cell; 1993 Jul; 74(2):357-69. PubMed ID: 8393731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cis-trans recognition and subunit-specific degradation of short-lived proteins.
    Johnson ES; Gonda DK; Varshavsky A
    Nature; 1990 Jul; 346(6281):287-91. PubMed ID: 2165217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INO2, a regulatory gene in yeast phospholipid biosynthesis, affects nuclear segregation and bud pattern formation.
    Hammond CL; Romano P; Roe S; Tontonoz P
    Cell Mol Biol Res; 1993; 39(6):561-77. PubMed ID: 8012448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SCFCdc4-mediated degradation of the Hac1p transcription factor regulates the unfolded protein response in Saccharomyces cerevisiae.
    Pal B; Chan NC; Helfenbaum L; Tan K; Tansey WP; Gething MJ
    Mol Biol Cell; 2007 Feb; 18(2):426-40. PubMed ID: 17108329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast cell-type-specific repressor alpha 2 acts cooperatively with a non-cell-type-specific protein.
    Keleher CA; Goutte C; Johnson AD
    Cell; 1988 Jun; 53(6):927-36. PubMed ID: 3289753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex.
    Tzamarias D; Struhl K
    Nature; 1994 Jun; 369(6483):758-61. PubMed ID: 8008070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae.
    Pascual-Ahuir A; Serrano R; Proft M
    Mol Cell Biol; 2001 Jan; 21(1):16-25. PubMed ID: 11113177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins.
    Melcher K
    J Mol Biol; 2000 Sep; 301(5):1097-112. PubMed ID: 10966808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAT alpha 1 can mediate gene activation by a-mating factor.
    Sengupta P; Cochran BH
    Genes Dev; 1991 Oct; 5(10):1924-34. PubMed ID: 1916267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae.
    McNabb DS; Pinto I
    Eukaryot Cell; 2005 Nov; 4(11):1829-39. PubMed ID: 16278450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo.
    George R; Beddoe T; Landl K; Lithgow T
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2296-301. PubMed ID: 9482879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast origin recognition complex functions in transcription silencing and DNA replication.
    Bell SP; Kobayashi R; Stillman B
    Science; 1993 Dec; 262(5141):1844-9. PubMed ID: 8266072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pathway for targeting soluble misfolded proteins to the yeast vacuole.
    Hong E; Davidson AR; Kaiser CA
    J Cell Biol; 1996 Nov; 135(3):623-33. PubMed ID: 8909538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor.
    Weeda G; Rossignol M; Fraser RA; Winkler GS; Vermeulen W; van 't Veer LJ; Ma L; Hoeijmakers JH; Egly JM
    Nucleic Acids Res; 1997 Jun; 25(12):2274-83. PubMed ID: 9173976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The WD repeats of Tup1 interact with the homeo domain protein alpha 2.
    Komachi K; Redd MJ; Johnson AD
    Genes Dev; 1994 Dec; 8(23):2857-67. PubMed ID: 7995523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.