These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21117614)

  • 1. Facile assembly of size- and shape-tunable IV-VI nanocrystals into superlattices.
    Wang Y; Dai Q; Zou B; Yu WW; Liu B; Zou G
    Langmuir; 2010 Dec; 26(24):19129-35. PubMed ID: 21117614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation.
    Murphy JE; Beard MC; Norman AG; Ahrenkiel SP; Johnson JC; Yu P; Mićić OI; Ellingson RJ; Nozik AJ
    J Am Chem Soc; 2006 Mar; 128(10):3241-7. PubMed ID: 16522105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super crystal structures of octahedral c-In2O3 nanocrystals.
    Lu W; Liu Q; Sun Z; He J; Ezeolu C; Fang J
    J Am Chem Soc; 2008 Jun; 130(22):6983-91. PubMed ID: 18461942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage.
    Choi JJ; Bealing CR; Bian K; Hughes KJ; Zhang W; Smilgies DM; Hennig RG; Engstrom JR; Hanrath T
    J Am Chem Soc; 2011 Mar; 133(9):3131-8. PubMed ID: 21306161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices.
    Demortière A; Launois P; Goubet N; Albouy PA; Petit C
    J Phys Chem B; 2008 Nov; 112(46):14583-92. PubMed ID: 18817438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs.
    Bodnarchuk MI; Li L; Fok A; Nachtergaele S; Ismagilov RF; Talapin DV
    J Am Chem Soc; 2011 Jun; 133(23):8956-60. PubMed ID: 21510705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD).
    Vaidyanathan R; Cox SM; Happek U; Banga D; Mathe MK; Stickney JL
    Langmuir; 2006 Dec; 22(25):10590-5. PubMed ID: 17129034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvothermal synthesis of monodisperse PbSe nanocrystals.
    Xu J; Ge JP; Li YD
    J Phys Chem B; 2006 Feb; 110(6):2497-501. PubMed ID: 16471846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes.
    Cherniukh I; Sekh TV; Rainò G; Ashton OJ; Burian M; Travesset A; Athanasiou M; Manoli A; John RA; Svyrydenko M; Morad V; Shynkarenko Y; Montanarella F; Naumenko D; Amenitsch H; Itskos G; Mahrt RF; Stöferle T; Erni R; Kovalenko MV; Bodnarchuk MI
    ACS Nano; 2022 May; 16(5):7210-7232. PubMed ID: 35385663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-driven symmetry of self-assembled nanocrystal superlattices--a computational study.
    Kaushik AP; Clancy P
    J Comput Chem; 2013 Mar; 34(7):523-32. PubMed ID: 23109263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.