BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21117641)

  • 1. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation.
    Nayak TR; Jian L; Phua LC; Ho HK; Ren Y; Pastorin G
    ACS Nano; 2010 Dec; 4(12):7717-25. PubMed ID: 21117641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes.
    Liu D; Yi C; Zhang D; Zhang J; Yang M
    ACS Nano; 2010 Apr; 4(4):2185-95. PubMed ID: 20218664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells.
    Das K; Madhusoodan AP; Mili B; Kumar A; Saxena AC; Kumar K; Sarkar M; Singh P; Srivastava S; Bag S
    Int J Nanomedicine; 2017; 12():3235-3252. PubMed ID: 28458543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone formation on carbon nanotube composite.
    Bhattacharya M; Wutticharoenmongkol-Thitiwongsawet P; Hamamoto DT; Lee D; Cui T; Prasad HS; Ahmad M
    J Biomed Mater Res A; 2011 Jan; 96(1):75-82. PubMed ID: 21105154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.
    Kroustalli AA; Kourkouli SN; Deligianni DD
    Ann Biomed Eng; 2013 Dec; 41(12):2655-65. PubMed ID: 23820769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.
    Eyni H; Ghorbani S; Shirazi R; Salari Asl L; P Beiranvand S; Soleimani M
    J Biomater Appl; 2017 Sep; 32(3):373-383. PubMed ID: 28752802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT
    Spine J; 2006; 6(6):615-23. PubMed ID: 17088192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs.
    Fedorovich NE; Haverslag RT; Dhert WJ; Alblas J
    Tissue Eng Part A; 2010 Jul; 16(7):2355-67. PubMed ID: 20205515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM
    Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineering of dental stem cells in a PEGylated fibrin gel.
    Galler KM; Cavender AC; Koeklue U; Suggs LJ; Schmalz G; D'Souza RN
    Regen Med; 2011 Mar; 6(2):191-200. PubMed ID: 21391853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds.
    Gastaldi G; Asti A; Scaffino MF; Visai L; Saino E; Cometa AM; Benazzo F
    J Biomed Mater Res A; 2010 Sep; 94(3):790-9. PubMed ID: 20336739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of varied ionic calcium on human adipose-derived stem cell mineralization.
    McCullen SD; Zhan J; Onorato ML; Bernacki SH; Loboa EG
    Tissue Eng Part A; 2010 Jun; 16(6):1971-81. PubMed ID: 20088702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun scaffolds for stem cell engineering.
    Lim SH; Mao HQ
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1084-96. PubMed ID: 19647024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic differentiation of human umbilical cord mesenchymal stromal cells in polyglycolic acid scaffolds.
    Wang L; Dormer NH; Bonewald LF; Detamore MS
    Tissue Eng Part A; 2010 Jun; 16(6):1937-48. PubMed ID: 20070186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments.
    Behan BL; DeWitt DG; Bogdanowicz DR; Koppes AN; Bale SS; Thompson DM
    J Biomed Mater Res A; 2011 Jan; 96(1):46-57. PubMed ID: 20949573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds.
    Mylonas D; Vidal MD; De Kok IJ; Moriarity JD; Cooper LF
    J Prosthodont; 2007; 16(6):421-30. PubMed ID: 17683475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel collagen scaffold supports human osteogenesis--applications for bone tissue engineering.
    Keogh MB; O' Brien FJ; Daly JS
    Cell Tissue Res; 2010 Apr; 340(1):169-77. PubMed ID: 20198386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix.
    Liu G; Li Y; Sun J; Zhou H; Zhang W; Cui L; Cao Y
    Tissue Eng Part A; 2010 Mar; 16(3):971-82. PubMed ID: 19839720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering.
    Yang X; Tare RS; Partridge KA; Roach HI; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO
    J Bone Miner Res; 2003 Jan; 18(1):47-57. PubMed ID: 12510805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.