These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 21117738)
1. On the variations of acoustic absorption peak with particle velocity in micro-perforated panels at high level of excitation. Tayong R; Dupont T; Leclaire P J Acoust Soc Am; 2010 May; 127(5):2875-82. PubMed ID: 21117738 [TBL] [Abstract][Full Text] [Related]
5. Measurement of the resistivity of porous materials with an alternating air-flow method. Dragonetti R; Ianniello C; Romano RA J Acoust Soc Am; 2011 Feb; 129(2):753-64. PubMed ID: 21361434 [TBL] [Abstract][Full Text] [Related]
6. An electromechanical low frequency panel sound absorber. Chang D; Liu B; Li X J Acoust Soc Am; 2010 Aug; 128(2):639-45. PubMed ID: 20707433 [TBL] [Abstract][Full Text] [Related]
7. Absorption of oblique incidence sound by a finite micro-perforated panel absorber. Yang C; Cheng L; Pan J J Acoust Soc Am; 2013 Jan; 133(1):201-9. PubMed ID: 23297895 [TBL] [Abstract][Full Text] [Related]
8. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating. Groby JP; Lauriks W; Vigran TE J Acoust Soc Am; 2010 May; 127(5):2865-74. PubMed ID: 21117737 [TBL] [Abstract][Full Text] [Related]
9. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker. Tao J; Jing R; Qiu X J Acoust Soc Am; 2014 Jan; 135(1):231-8. PubMed ID: 24437763 [TBL] [Abstract][Full Text] [Related]
10. Sound transmission through finite lightweight multilayered structures with thin air layers. Dijckmans A; Vermeir G; Lauriks W J Acoust Soc Am; 2010 Dec; 128(6):3513-24. PubMed ID: 21218884 [TBL] [Abstract][Full Text] [Related]
11. Prediction of the sound field above a patchwork of absorbing materials. Lanoye R; Vermeir G; Lauriks W; Sgard F; Desmet W J Acoust Soc Am; 2008 Feb; 123(2):793-802. PubMed ID: 18247884 [TBL] [Abstract][Full Text] [Related]
12. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels. Zhang B; Chen T; Zhao Y; Zhang W; Zhu J J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873 [TBL] [Abstract][Full Text] [Related]
13. Sound transmission through a microperforated-panel structure with subdivided air cavities. Toyoda M; Takahashi D J Acoust Soc Am; 2008 Dec; 124(6):3594-603. PubMed ID: 19206788 [TBL] [Abstract][Full Text] [Related]
14. Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity. Wang C; Cheng L; Pan J; Yu G J Acoust Soc Am; 2010 Jan; 127(1):238-46. PubMed ID: 20058969 [TBL] [Abstract][Full Text] [Related]
17. Ultrasonic airborne insertion loss measurements at normal incidence (L). Farley J; Anderson BE J Acoust Soc Am; 2010 Dec; 128(6):3305-7. PubMed ID: 21218864 [TBL] [Abstract][Full Text] [Related]
18. Solid-perforated panel layout optimization by topology optimization based on unified transfer matrix. Kim YJ; Kim YY J Acoust Soc Am; 2010 Oct; 128(4):1777-88. PubMed ID: 20968351 [TBL] [Abstract][Full Text] [Related]
19. High frequency acoustic transmission loss of perforated plates at normal incidence. Phong V; Papamoschou D J Acoust Soc Am; 2013 Aug; 134(2):1090-101. PubMed ID: 23927109 [TBL] [Abstract][Full Text] [Related]
20. Discrete vortex model of a Helmholtz resonator subjected to high-intensity sound and grazing flow. Dai X; Jing X; Sun X J Acoust Soc Am; 2012 Nov; 132(5):2988-96. PubMed ID: 23145586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]