These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 21117762)

  • 21. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments.
    Goldsworthy RL; Delhorne LA; Desloge JG; Braida LD
    J Acoust Soc Am; 2014 Aug; 136(2):867-76. PubMed ID: 25096120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing the impact of wind noise on cochlear implant processors with two microphones.
    Kokkinakis K; Cox C
    J Acoust Soc Am; 2014 May; 135(5):EL219-25. PubMed ID: 24815292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of reverberant self-masking and overlap-masking effects on speech intelligibility by cochlear implant listeners (L).
    Kokkinakis K; Loizou PC
    J Acoust Soc Am; 2011 Sep; 130(3):1099-102. PubMed ID: 21895052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A directional remote-microphone for bimodal cochlear implant recipients.
    Vroegop JL; Homans NC; Goedegebure A; van der Schroeff MP
    Int J Audiol; 2018 Nov; 57(11):858-863. PubMed ID: 30261771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speech perception in simulated electric hearing exploits information-bearing acoustic change.
    Stilp CE; Goupell MJ; Kluender KR
    J Acoust Soc Am; 2013 Feb; 133(2):EL136-41. PubMed ID: 23363194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blind binary masking for reverberation suppression in cochlear implants.
    Hazrati O; Lee J; Loizou PC
    J Acoust Soc Am; 2013 Mar; 133(3):1607-14. PubMed ID: 23464030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant.
    Dorman MF; Cook S; Spahr A; Zhang T; Loiselle L; Schramm D; Whittingham J; Gifford R
    Hear Res; 2015 Apr; 322():107-11. PubMed ID: 25285624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Avoiding disconnection: An evaluation of telephone options for cochlear implant users.
    Marcrum SC; Picou EM; Steffens T
    Int J Audiol; 2017 Mar; 56(3):186-193. PubMed ID: 27809627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining acoustic and electric stimulation in the service of speech recognition.
    Dorman MF; Gifford RH
    Int J Audiol; 2010 Dec; 49(12):912-9. PubMed ID: 20874053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microphone directionality, pre-emphasis filter, and wind noise in cochlear implants.
    Chung K; McKibben N
    J Am Acad Audiol; 2011 Oct; 22(9):586-600. PubMed ID: 22192604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors.
    Dwyer RT; Roberts J; Gifford RH
    J Am Acad Audiol; 2020 Sep; 31(8):578-589. PubMed ID: 32340055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of reverberant self- and overlap-masking on speech recognition in cochlear implant listeners.
    Desmond JM; Collins LM; Throckmorton CS
    J Acoust Soc Am; 2014 Jun; 135(6):EL304-10. PubMed ID: 24907838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Masking release and the contribution of obstruent consonants on speech recognition in noise by cochlear implant users.
    Li N; Loizou PC
    J Acoust Soc Am; 2010 Sep; 128(3):1262-71. PubMed ID: 20815461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of early and late reflections on intelligibility of reverberated speech by cochlear implant listeners.
    Hu Y; Kokkinakis K
    J Acoust Soc Am; 2014 Jan; 135(1):EL22-8. PubMed ID: 24437852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure.
    Yousefian N; Loizou PC
    J Acoust Soc Am; 2012 Nov; 132(5):3399-405. PubMed ID: 23145620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners.
    Dieudonné B; Francart T
    Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voice gender differences and separation of simultaneous talkers in cochlear implant users with residual hearing.
    Visram AS; Kluk K; McKay CM
    J Acoust Soc Am; 2012 Aug; 132(2):EL135-41. PubMed ID: 22894312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.