These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21117891)

  • 1. Low-cost monitoring of patients during unsupervised robot/computer assisted motivating stroke rehabilitation.
    Johnson MJ; Shakya Y; Strachota E; Ahamed SI
    Biomed Tech (Berl); 2011 Feb; 56(1):5-9. PubMed ID: 21117891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mobile robot therapist for under-supervised training with robot/computer assisted motivating systems.
    Shakya Y; Johnson MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4511-4. PubMed ID: 19163718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the TheraDrive system for robot/computer assisted motivating rehabilitation after stroke.
    Ruparel R; Johnson MJ; Strachota E; McGuire J; Tchekanov G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():811-4. PubMed ID: 19963475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation.
    Johnson MJ; Feng X; Johnson LM; Winters JM
    J Neuroeng Rehabil; 2007 Mar; 4():6. PubMed ID: 17331243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Home rehabilitation system supported by the safety model.
    Kuusik A; Sarna K; Reilent E
    Stud Health Technol Inform; 2013; 189():145-51. PubMed ID: 23739374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unconstrained monitoring system for home rehabilitation. A wireless heart/respiratory rate sensor accessible to home-visit therapists.
    Masuda Y; Sekimoto M; Nambu M; Higashi Y; Fujimoto T; Chihara K; Tamura T
    IEEE Eng Med Biol Mag; 2005; 24(4):43-7. PubMed ID: 16119212
    [No Abstract]   [Full Text] [Related]  

  • 7. Us'em: the user-centered design of a device for motivating stroke patients to use their impaired arm-hand in daily life activities.
    Markopoulos P; Timmermans AA; Beursgens L; van Donselaar R; Seelen HA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5182-7. PubMed ID: 22255506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility study of TheraDrive: a low-cost game-based environment for the delivery of upper arm stroke therapy.
    Johnson MJ; Ramachandran B; Paranjape RP; Kosasih JB
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():695-8. PubMed ID: 17946851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic personal aids for mobility and monitoring for the elderly.
    Spenko M; Yu H; Dubowsky S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):344-51. PubMed ID: 17009494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Low-Cost Adaptive Balance Training Platform for Stroke Patients: A Usability Study.
    Verma S; Kumar D; Kumawat A; Dutta A; Lahiri U
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):935-944. PubMed ID: 28207400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors.
    O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M
    J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROBOT - Assisted Rehabilitation in Patients After Stroke.
    Kefaliakos A; Pliakos I; Kalokerinou A; Mechili A; Diomidous M
    Stud Health Technol Inform; 2014; 202():316. PubMed ID: 25000084
    [No Abstract]   [Full Text] [Related]  

  • 16. Wearable sensors and telerehabilitation.
    Winters JM; Wang Y; Winters JM
    IEEE Eng Med Biol Mag; 2003; 22(3):56-65. PubMed ID: 12845820
    [No Abstract]   [Full Text] [Related]  

  • 17. Innovative self management system for guided cardiac rehabilitation.
    Ottaviano M; Vera-Muñoz C; Arredondo MT; Salvi D; Salvi S; Páez JM; de Barrionuevo AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1559-62. PubMed ID: 22254619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stroke rehabilitation at home using virtual reality, haptics and telemedicine.
    Rydmark M; Broeren J; Pascher R
    Stud Health Technol Inform; 2002; 85():434-7. PubMed ID: 15458128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.