BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21117892)

  • 21. Ginkgolide B increases hydrogen sulfide and protects against endothelial dysfunction in diabetic rats.
    Wang GG; Chen QY; Li W; Lu XH; Zhao X
    Croat Med J; 2015 Feb; 56(1):4-13. PubMed ID: 25727037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of iron dextran on the oxidative stress in cardiovascular tissues of rats with chronic renal failure.
    Lim CS; Vaziri ND
    Kidney Int; 2004 May; 65(5):1802-9. PubMed ID: 15086920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: an hormetic stimulus.
    Borchi E; Bargelli V; Guidotti V; Berti A; Stefani M; Nediani C; Rigacci S
    Redox Biol; 2013; 2():114-22. PubMed ID: 24416718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus.
    Gimenes R; Gimenes C; Rosa CM; Xavier NP; Campos DHS; Fernandes AAH; Cezar MDM; Guirado GN; Pagan LU; Chaer ID; Fernandes DC; Laurindo FR; Cicogna AC; Okoshi MP; Okoshi K
    Cardiovasc Diabetol; 2018 Jan; 17(1):15. PubMed ID: 29343259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase.
    Zhao W; Zhao D; Yan R; Sun Y
    Cardiovasc Pathol; 2009; 18(3):156-66. PubMed ID: 18402834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats.
    Taylor NE; Glocka P; Liang M; Cowley AW
    Hypertension; 2006 Apr; 47(4):692-8. PubMed ID: 16505210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats.
    Liu J; Lloyd SG
    Nutr Res; 2013 Apr; 33(4):311-21. PubMed ID: 23602249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic smooth muscle cell phenotype is associated with increased nicotinamide adenine dinucleotide phosphate oxidase activity: effect on collagen secretion.
    Patel R; Cardneau JD; Colles SM; Graham LM
    J Vasc Surg; 2006 Feb; 43(2):364-71. PubMed ID: 16476616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antioxidant enzymes in ciprofibrate-induced oxidative stress.
    Dhaunsi GS; Singh I; Orak JK; Singh AK
    Carcinogenesis; 1994 Sep; 15(9):1923-30. PubMed ID: 7923586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats.
    Santana-Garrido Á; Reyes-Goya C; Fernández-Bobadilla C; Blanca AJ; André H; Mate A; Vázquez CM
    Mol Vis; 2021; 27():161-178. PubMed ID: 33907371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension.
    Chan SH; Wu CA; Wu KL; Ho YH; Chang AY; Chan JY
    Circ Res; 2009 Oct; 105(9):886-96. PubMed ID: 19762685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The renoprotective effect of L-carnitine in hypertensive rats is mediated by modulation of oxidative stress-related gene expression.
    Zambrano S; Blanca AJ; Ruiz-Armenta MV; Miguel-Carrasco JL; Revilla E; Santa-María C; Mate A; Vázquez CM
    Eur J Nutr; 2013 Sep; 52(6):1649-59. PubMed ID: 23223967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of oestrogen on reactive oxygen species production in the aortas of ovariectomized Dahl salt-sensitive rats.
    Zhang L; Fujii S; Kosaka H
    J Hypertens; 2007 Feb; 25(2):407-14. PubMed ID: 17211248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age and exercise training alter signaling through reactive oxygen species in the endothelium of skeletal muscle arterioles.
    Sindler AL; Reyes R; Chen B; Ghosh P; Gurovich AN; Kang LS; Cardounel AJ; Delp MD; Muller-Delp JM
    J Appl Physiol (1985); 2013 Mar; 114(5):681-93. PubMed ID: 23288555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species.
    Piccoli C; D'Aprile A; Ripoli M; Scrima R; Lecce L; Boffoli D; Tabilio A; Capitanio N
    Biochem Biophys Res Commun; 2007 Feb; 353(4):965-72. PubMed ID: 17204244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-oxidants correct disturbance of redox enzymes in the hearts of rat fetuses with congenital diaphragmatic hernia.
    Aras-López R; Almeida L; Andreu-Fernández V; Tovar J; Martínez L
    Pediatr Surg Int; 2018 Mar; 34(3):307-313. PubMed ID: 29079903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disrupted pro- and antioxidative balance as a mechanism of neurotoxicity induced by perinatal exposure to lead.
    Baranowska-Bosiacka I; Gutowska I; Marchlewicz M; Marchetti C; Kurzawski M; Dziedziejko V; Kolasa A; Olszewska M; Rybicka M; Safranow K; Nowacki P; Wiszniewska B; Chlubek D
    Brain Res; 2012 Jan; 1435():56-71. PubMed ID: 22197700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superoxide dismutase, catalase and glutathione peroxidase in the spontaneously hypertensive rat kidney: effect of antioxidant-rich diet.
    Zhan CD; Sindhu RK; Pang J; Ehdaie A; Vaziri ND
    J Hypertens; 2004 Oct; 22(10):2025-33. PubMed ID: 15361776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice.
    Tran TV; Shin EJ; Dang DK; Ko SK; Jeong JH; Nah SY; Jang CG; Lee YJ; Toriumi K; Nabeshima T; Kim HC
    Food Chem Toxicol; 2017 Dec; 110():300-315. PubMed ID: 29037473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.