BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 21119047)

  • 1. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization.
    Seidl MF; Van den Ackerveken G; Govers F; Snel B
    Plant Physiol; 2011 Feb; 155(2):628-44. PubMed ID: 21119047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance.
    Dodds PN; Rafiqi M; Gan PHP; Hardham AR; Jones DA; Ellis JG
    New Phytol; 2009; 183(4):993-1000. PubMed ID: 19558422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in Phytophthora sojae.
    Ye W; Wang Y; Dong S; Tyler BM; Wang Y
    BMC Genomics; 2013 Nov; 14(1):839. PubMed ID: 24286285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring laccase genes from plant pathogen genomes: a bioinformatic approach.
    Feng BZ; Li PQ; Fu L; Yu XM
    Genet Mol Res; 2015 Oct; 14(4):14019-36. PubMed ID: 26535716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycoside hydrolases family 20 (GH20) represent putative virulence factors that are shared by animal pathogenic oomycetes, but are absent in phytopathogens.
    Olivera IE; Fins KC; Rodriguez SA; Abiff SK; Tartar JL; Tartar A
    BMC Microbiol; 2016 Oct; 16(1):232. PubMed ID: 27716041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity?
    Soanes DM; Richards TA; Talbot NJ
    Plant Cell; 2007 Nov; 19(11):3318-26. PubMed ID: 18024565
    [No Abstract]   [Full Text] [Related]  

  • 7. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses.
    Larroque M; Barriot R; Bottin A; Barre A; Rougé P; Dumas B; Gaulin E
    BMC Genomics; 2012 Nov; 13():605. PubMed ID: 23140525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in oomycete genomics.
    McGowan J; Fitzpatrick DA
    Adv Genet; 2020; 105():175-228. PubMed ID: 32560787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms.
    Meng S; Torto-Alalibo T; Chibucos MC; Tyler BM; Dean RA
    BMC Microbiol; 2009 Feb; 9 Suppl 1(Suppl 1):S7. PubMed ID: 19278555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity.
    Franceschetti M; Maqbool A; Jiménez-Dalmaroni MJ; Pennington HG; Kamoun S; Banfield MJ
    Microbiol Mol Biol Rev; 2017 Jun; 81(2):. PubMed ID: 28356329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors.
    He Q; McLellan H; Boevink PC; Birch PRJ
    Plant Commun; 2020 Jul; 1(4):100050. PubMed ID: 33367246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.
    Sharma R; Xia X; Riess K; Bauer R; Thines M
    Genome Biol Evol; 2015 Aug; 7(9):2781-98. PubMed ID: 26314305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pathogen-host interactions database (PHI-base) provides insights into generic and novel themes of pathogenicity.
    Baldwin TK; Winnenburg R; Urban M; Rawlings C; Koehler J; Hammond-Kosack KE
    Mol Plant Microbe Interact; 2006 Dec; 19(12):1451-62. PubMed ID: 17153929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How filamentous plant pathogen effectors are translocated to host cells.
    Lo Presti L; Kahmann R
    Curr Opin Plant Biol; 2017 Aug; 38():19-24. PubMed ID: 28460240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oomycete Gene Table: an online database for comparative genomic analyses of the oomycete microorganisms.
    Rujirawat T; Patumcharoenpol P; Kittichotirat W; Krajaejun T
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31260041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions.
    Stukenbrock EH; McDonald BA
    Mol Plant Microbe Interact; 2009 Apr; 22(4):371-80. PubMed ID: 19271952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes.
    Pais M; Win J; Yoshida K; Etherington GJ; Cano LM; Raffaele S; Banfield MJ; Jones A; Kamoun S; Saunders DG
    Genome Biol; 2013 Jun; 14(6):211. PubMed ID: 23809564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trafficking arms: oomycete effectors enter host plant cells.
    Birch PR; Rehmany AP; Pritchard L; Kamoun S; Beynon JL
    Trends Microbiol; 2006 Jan; 14(1):8-11. PubMed ID: 16356717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation.
    Gaulin E; Pel MJC; Camborde L; San-Clemente H; Courbier S; Dupouy MA; Lengellé J; Veyssiere M; Le Ru A; Grandjean F; Cordaux R; Moumen B; Gilbert C; Cano LM; Aury JM; Guy J; Wincker P; Bouchez O; Klopp C; Dumas B
    BMC Biol; 2018 Apr; 16(1):43. PubMed ID: 29669603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens.
    Panstruga R; Dodds PN
    Science; 2009 May; 324(5928):748-50. PubMed ID: 19423815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.