BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 21119225)

  • 41. Spatial regularization of the electrocardiographic inverse problem and its application to endocardial mapping.
    Velipasaoglu EO; Sun H; Zhang F; Berrier KL; Khoury DS
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):327-37. PubMed ID: 10743774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints.
    Dogrusoz YS; Gavgani AM
    Med Biol Eng Comput; 2013 Apr; 51(4):367-75. PubMed ID: 23224834
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finite-element-based discretization and regularization strategies for 3-D inverse electrocardiography.
    Wang D; Kirby RM; Johnson CR
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1827-38. PubMed ID: 21382763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Laplacian inverse problem of electrocardiography: an eccentric spheres study.
    Johnston PR
    IEEE Trans Biomed Eng; 1997 Jul; 44(7):539-48. PubMed ID: 9210813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of multivariate adaptive non-parametric reduced-order model for solving the inverse electrocardiography problem: a simulation study.
    Onak ÖN; Dogrusoz YS; Weber GW
    Med Biol Eng Comput; 2019 May; 57(5):967-993. PubMed ID: 30506117
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Improvement of ECG analysis in monitoring the electrical cardiac activity].
    Bodin ON; Loginov DS; Mitrokhina NIu
    Med Tekh; 2008; (3):23-6. PubMed ID: 18688940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heart-surface reconstruction and ECG electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity.
    Ghanem RN; Ramanathan C; Jia P; Rudy Y
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1307-18. PubMed ID: 14552584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The application of subspace preconditioned LSQR algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Huang W; Shou G; Liu F; Crozier S
    Med Eng Phys; 2009 Oct; 31(8):979-85. PubMed ID: 19564127
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The inverse problem of electrocardiography: a solution in terms of single- and double-layer sources of the epicardial surface.
    Horácek BM; Clements JC
    Math Biosci; 1997 Sep; 144(2):119-54. PubMed ID: 9258003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regional regularization of the electrocardiographic inverse problem: a model study using spherical geometry.
    Oster HS; Rudy Y
    IEEE Trans Biomed Eng; 1997 Feb; 44(2):188-99. PubMed ID: 9214798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of the Tikhonov Regularization Parameter on the Accuracy of the Inverse Problem in Electrocardiography.
    Wang T; Karel J; Bonizzi P; Peeters RLM
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850438
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noninvasive Imaging of Epicardial and Endocardial Potentials With Low Rank and Sparsity Constraints.
    Fang L; Xu J; Hu H; Chen Y; Shi P; Wang L; Liu H
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2651-2662. PubMed ID: 30668450
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm.
    Jiang M; Jin J; Liu F; Yu Y; Xia L; Wang Y; Crozier S
    Magn Reson Imaging; 2013 Sep; 31(7):1218-27. PubMed ID: 23684962
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data.
    Modre R; Tilg B; Fischer G; Wach P
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1153-61. PubMed ID: 12374339
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of regularization techniques for the reconstruction of transmembrane potentials in the heart.
    Skipa O; Nalbach M; Sachse FB; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():246-8. PubMed ID: 12451829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of the method of fundamental solutions to potential-based inverse electrocardiography.
    Wang Y; Rudy Y
    Ann Biomed Eng; 2006 Aug; 34(8):1272-88. PubMed ID: 16807788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging.
    Chamorro-Servent J; Dubois R; Coudière Y
    Front Physiol; 2019; 10():273. PubMed ID: 30971937
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.
    Cluitmans MJ; Karel JM; Bonizzi P; Volders PG; Westra RL; Peeters RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3781-4. PubMed ID: 24110554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accuracy of electrocardiographic imaging using the method of fundamental solutions.
    Johnston PR
    Comput Biol Med; 2018 Nov; 102():433-448. PubMed ID: 30309613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Localization of Activation Origin on Patient-Specific Epicardial Surface by Empirical Bayesian Method.
    Zhou S; Sapp JL; Dawoud F; Horacek BM
    IEEE Trans Biomed Eng; 2019 May; 66(5):1380-1389. PubMed ID: 30281434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.