These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21119438)

  • 21. Biomaterials in craniofacial surgery: experimental studies and clinical application.
    Chim H; Gosain AK
    J Craniofac Surg; 2009 Jan; 20(1):29-33. PubMed ID: 19164984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of two resorbable membrane systems in bone regeneration after removal of wisdom teeth: a randomized-controlled clinical pilot study.
    Zwahlen RA; Cheung LK; Zheng LW; Chow RL; Li T; Schuknecht B; Grätz KW; Weber FE
    Clin Oral Implants Res; 2009 Oct; 20(10):1084-91. PubMed ID: 19751357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guided bone regeneration using rhGDF-5- and rhBMP-2-coated natural bone mineral in rat calvarial defects.
    Schwarz F; Ferrari D; Sager M; Herten M; Hartig B; Becker J
    Clin Oral Implants Res; 2009 Nov; 20(11):1219-30. PubMed ID: 19719740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of adding resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits.
    al Ruhaimi KA
    Int J Oral Maxillofac Implants; 2000; 15(6):859-64. PubMed ID: 11151586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Latex use as an occlusive membrane for guided bone regeneration.
    Ereno C; Guimarães SA; Pasetto S; Herculano RD; Silva CP; Graeff CF; Tavano O; Baffa O; Kinoshita A
    J Biomed Mater Res A; 2010 Dec; 95(3):932-9. PubMed ID: 20845492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Study on nano-hydroxyapatite/type I collagen artificial bone scaffold structure and osteogenic ability in vivo].
    Xu J; Zhu L; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):567-70. PubMed ID: 18693432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A thin carbon-fiber web as a scaffold for bone-tissue regeneration.
    Aoki K; Usui Y; Narita N; Ogiwara N; Iashigaki N; Nakamura K; Kato H; Sano K; Ogiwara N; Kametani K; Kim C; Taruta S; Kim YA; Endo M; Saito N
    Small; 2009 Jul; 5(13):1540-6. PubMed ID: 19334009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Augmentation of osteoinduction with a biodegradable poly(propylene glycol-co-fumaric acid) bone graft extender. A histologic and histomorphometric study in rats.
    Lewandrowski KU; Bondre S; Gresser JD; Silva AE; Wise DL; Trantolo DJ
    Biomed Mater Eng; 1999; 9(5-6):325-34. PubMed ID: 10822488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone regenerative properties of rat, goat and human platelet-rich plasma.
    Plachokova AS; van den Dolder J; van den Beucken JJ; Jansen JA
    Int J Oral Maxillofac Surg; 2009 Aug; 38(8):861-9. PubMed ID: 19443180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteoconduction of different sizes of anorganic bone particles in a model of guided bone regeneration.
    Zhou X; Zhang Z; Li S; Bai Y; Xu H
    Br J Oral Maxillofac Surg; 2011 Jan; 49(1):37-41. PubMed ID: 20106572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of platelet-rich plasma on healing in critical-size long-bone defects.
    Kasten P; Vogel J; Geiger F; Niemeyer P; Luginbühl R; Szalay K
    Biomaterials; 2008 Oct; 29(29):3983-92. PubMed ID: 18614227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly-D-L-Lactic Acid Membranes for Bone Regeneration.
    Annunziata M; Nastri L; Borgonovo A; Benigni M; Poli PP
    J Craniofac Surg; 2015 Jul; 26(5):1691-6. PubMed ID: 26114511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved osteoconduction of cortical bone grafts by biodegradable foam coating.
    Lewandrowski KU; Bondre SP; Gresser JD; Wise DL; Tomford WW; Trantolo DJ
    Biomed Mater Eng; 1999; 9(5-6):265-75. PubMed ID: 10822482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [An experimental study on repairing bone defect with the biodegradable polycaprolactone material].
    Aahmat Y; Chen T; Chen Z; Liu D; Wang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):439-42. PubMed ID: 16038457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Repair of cranial defects with bone marrow derived mesenchymal stem cells and beta-TCP scaffold in rabbits].
    Bo B; Wang CY; Guo XM
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):335-8. PubMed ID: 12920731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering.
    Anil Kumar PR; Varma HK; Kumary TV
    Biomed Mater; 2007 Mar; 2(1):48-54. PubMed ID: 18458433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peri-implant reconstruction using autologous periosteum-derived cells and guided bone regeneration.
    Ribeiro FV; Suaid FF; Ruiz KG; Rodrigues TL; Carvalho MD; Nociti FH; Sallum EA; Casati MZ
    J Clin Periodontol; 2010 Dec; 37(12):1128-36. PubMed ID: 20969610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone engineering of the rabbit ulna.
    El-Ghannam A; Cunningham L; Pienkowski D; Hart A
    J Oral Maxillofac Surg; 2007 Aug; 65(8):1495-502. PubMed ID: 17656274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone tissue engineering scaffolds of today and tomorrow.
    Panetta NJ; Gupta DM; Longaker MT
    J Craniofac Surg; 2009 Sep; 20(5):1531-2. PubMed ID: 19816291
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.