These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 21120745)
1. Quantitative structure-activity relationships for organophosphates binding to trypsin and chymotrypsin. Ruark CD; Hack CE; Robinson PJ; Gearhart JM J Toxicol Environ Health A; 2011; 74(1):1-23. PubMed ID: 21120745 [TBL] [Abstract][Full Text] [Related]
2. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship? Aurbek N; Herkert NM; Koller M; Thiermann H; Worek F Chem Biol Interact; 2010 Sep; 187(1-3):215-9. PubMed ID: 20105433 [TBL] [Abstract][Full Text] [Related]
3. In silico pharmacophore model for tabun-inhibited acetylcholinesterase reactivators: a study of their stereoelectronic properties. Bhattacharjee AK; Kuca K; Musilek K; Gordon RK Chem Res Toxicol; 2010 Jan; 23(1):26-36. PubMed ID: 20028185 [TBL] [Abstract][Full Text] [Related]
4. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase. Ruark CD; Hack CE; Robinson PJ; Anderson PE; Gearhart JM Arch Toxicol; 2013 Feb; 87(2):281-9. PubMed ID: 22990135 [TBL] [Abstract][Full Text] [Related]
5. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models. Naik PK; Singh T; Singh H SAR QSAR Environ Res; 2009 Jul; 20(5-6):551-66. PubMed ID: 19916114 [TBL] [Abstract][Full Text] [Related]
6. [Comparative analysis of sensitivity of proteases (chymotrypsin and trypsin) and cholinesterases of different origin to some organophosphorus inhibitors]. Rozengart EV Zh Evol Biokhim Fiziol; 2009; 45(3):277-83. PubMed ID: 19569552 [TBL] [Abstract][Full Text] [Related]
7. 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments. Pandey G; Saxena AK J Chem Inf Model; 2006; 46(6):2579-90. PubMed ID: 17125198 [TBL] [Abstract][Full Text] [Related]
8. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin. Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737 [TBL] [Abstract][Full Text] [Related]
9. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function. Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 A resolution. Structural basis of Janus-faced serine protease inhibitor specificity. Koepke J; Ermler U; Warkentin E; Wenzl G; Flecker P J Mol Biol; 2000 May; 298(3):477-91. PubMed ID: 10772864 [TBL] [Abstract][Full Text] [Related]
11. Fixation of the two Tabun isomers in acetylcholinesterase: a QM/MM study. Kwasnieski O; Verdier L; Malacria M; Derat E J Phys Chem B; 2009 Jul; 113(29):10001-7. PubMed ID: 19569635 [TBL] [Abstract][Full Text] [Related]
12. Insight into the structural requirements of urokinase-type plasminogen activator inhibitors based on 3D QSAR CoMFA/CoMSIA models. Bhongade BA; Gadad AK J Med Chem; 2006 Jan; 49(2):475-89. PubMed ID: 16420035 [TBL] [Abstract][Full Text] [Related]
13. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Bartling A; Worek F; Szinicz L; Thiermann H Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809 [TBL] [Abstract][Full Text] [Related]
14. 3D QSAR studies of AChE inhibitors based on molecular docking scores and CoMFA. Akula N; Lecanu L; Greeson J; Papadopoulos V Bioorg Med Chem Lett; 2006 Dec; 16(24):6277-80. PubMed ID: 17049234 [TBL] [Abstract][Full Text] [Related]
15. Chromatographic preparation and kinetic analysis of interactions between tabun enantiomers and acetylcholinesterase. Tenberken O; Thiermann H; Worek F; Reiter G Toxicol Lett; 2010 Jun; 195(2-3):142-6. PubMed ID: 20347021 [TBL] [Abstract][Full Text] [Related]
16. An investigation of structurally diverse carbamates for acetylcholinesterase (AChE) inhibition using 3D-QSAR analysis. Roy KK; Dixit A; Saxena AK J Mol Graph Model; 2008 Sep; 27(2):197-208. PubMed ID: 18515163 [TBL] [Abstract][Full Text] [Related]
17. Histone acetylase inhibitor trichostatin A induces acetylcholinesterase expression and protects against organophosphate exposure. Curtin BF; Tetz LM; Compton JR; Doctor BP; Gordon RK; Nambiar MP J Cell Biochem; 2005 Nov; 96(4):839-49. PubMed ID: 16149071 [TBL] [Abstract][Full Text] [Related]
18. Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase. Mazor O; Cohen O; Kronman C; Raveh L; Stein D; Ordentlich A; Shafferman A Mol Pharmacol; 2008 Sep; 74(3):755-63. PubMed ID: 18523134 [TBL] [Abstract][Full Text] [Related]
19. Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors. Chaudhaery SS; Roy KK; Saxena AK J Chem Inf Model; 2009 Jun; 49(6):1590-601. PubMed ID: 19441865 [TBL] [Abstract][Full Text] [Related]
20. Kinetic analysis of reactivation and aging of human acetylcholinesterase inhibited by different phosphoramidates. Worek F; Aurbek N; Koller M; Becker C; Eyer P; Thiermann H Biochem Pharmacol; 2007 Jun; 73(11):1807-17. PubMed ID: 17382909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]