These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21121297)

  • 21. Polyacrylonitrile Fibers with a Gradient Silica Distribution as Precursors of Carbon-Silicon-Carbide Fibers.
    Varfolomeeva LA; Skvortsov IY; Levin IS; Shandryuk GA; Patsaev TD; Kulichikhin VG
    Polymers (Basel); 2023 Jun; 15(11):. PubMed ID: 37299378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyvinylidene Fluoride (PVDF)/Polyacrylonitrile (PAN)/Carbon Nanotube Nanocomposites for Energy Storage and Conversion.
    Aqeel SM; Huang Z; Walton J; Baker C; Falkner D; Liu Z; Wang Z
    Adv Compos Hybrid Mater; 2018 Mar; 1(1):185-192. PubMed ID: 29732461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Transformation of Polyacrylonitrile (PAN) Fibers during Rapid Thermal Pretreatment in Nitrogen Atmosphere.
    Dang W; Liu J; Wang X; Yan K; Zhang A; Yang J; Chen L; Liang J
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31906379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sub-micrometer-sized metal tubes from electrospun fiber templates.
    Ochanda F; Jones WE
    Langmuir; 2005 Nov; 21(23):10791-6. PubMed ID: 16262353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyacrylonitrile fibers containing graphene oxide nanoribbons.
    Chien AT; Liu HC; Newcomb BA; Xiang C; Tour JM; Kumar S
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5281-8. PubMed ID: 25671488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and Study on Nickel Oxide Reduction of Polyacrylonitrile-Based Carbon Nanofibers by Thermal Treatment.
    Lee YJ; Kim HB; Jeun JP; Lee DS; Koo DH; Kang PH
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6028-31. PubMed ID: 26369192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers.
    Shokrani Havigh R; Mahmoudi Chenari H
    Sci Rep; 2022 Jun; 12(1):10704. PubMed ID: 35739235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.
    Li X; Qin A; Zhao X; Liu D; Wang H; He C
    Phys Chem Chem Phys; 2015 Sep; 17(34):21856-65. PubMed ID: 26235219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers.
    Deng S; Bai R; Chen JP
    J Colloid Interface Sci; 2003 Apr; 260(2):265-72. PubMed ID: 12686174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study.
    Gergin İ; Ismar E; Sarac AS
    Beilstein J Nanotechnol; 2017; 8():1616-1628. PubMed ID: 28875098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and properties of cellulose/silver nanocomposite fibers.
    Li R; He M; Li T; Zhang L
    Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and luminescence properties of Lu(2)O(3):Eu(3+) nanofibers by sol-gel/electrospinning process.
    Li X; Yu M; Hou Z; Wang W; Li G; Cheng Z; Chai R; Lin J
    J Colloid Interface Sci; 2010 Sep; 349(1):166-72. PubMed ID: 20621811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications.
    Hood AR; Saurakhiya N; Deva D; Sharma A; Verma N
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4313-22. PubMed ID: 23910348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The carbonization of polyacrylonitrile-derived electrospun carbon nanofibers studied by
    Schierholz R; Kröger D; Weinrich H; Gehring M; Tempel H; Kungl H; Mayer J; Eichel RA
    RSC Adv; 2019 Feb; 9(11):6267-6277. PubMed ID: 35517276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of Unidirectional Water Permeable PS/PET Composite Nanofibers Modified with Silver Nanoparticles via Electrospinning.
    Li C; Wang H; Zhao X; Yang K; Meng Q; Zhang L
    Membranes (Basel); 2023 Feb; 13(3):. PubMed ID: 36984644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single walled carbon nanotube-metal oxide nanocomposites for reversible and reproducible storage of hydrogen.
    Silambarasan D; Surya VJ; Vasu V; Iyakutti K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11419-26. PubMed ID: 24117025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, Activation, and Characterization of Carbon Fiber Precursor Derived from Jute Fiber.
    Hossen MS; Islam T; Hoque SM; Islam A; Bashar MM; Bhat G
    ACS Omega; 2024 Aug; 9(33):35384-35393. PubMed ID: 39184490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanofibers based carbon-carbon composite fibers.
    Hiremath N; Bhat S; Boy R; Evora MC; Naskar AK; Mays J; Bhat G
    Discov Nano; 2023 Dec; 18(1):159. PubMed ID: 38127269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers.
    Martin HJ; Luo H; Chen H; Do-Thanh CL; Kearney LT; Mayes R; Naskar AK; Dai S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8663-8673. PubMed ID: 31977177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.