These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21121346)

  • 1. Influence of polyols on the formation of iron oxide nanoparticles in solvothermal system.
    Jiao S; Xu M; Zhang Y; Pang G; Feng S
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8405-7. PubMed ID: 21121346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia.
    Kotoulas A; Dendrinou-Samara C; Angelakeris M; Kalogirou O
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols.
    Cai W; Wan J
    J Colloid Interface Sci; 2007 Jan; 305(2):366-70. PubMed ID: 17084856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-Assisted Solvothermal Synthesis of Nanocrystallite-Derived Magnetite Spheres.
    Zambzickaite G; Talaikis M; Dobilas J; Stankevic V; Drabavicius A; Niaura G; Mikoliunaite L
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple one-pot synthesis of single-crystalline magnetite hollow spheres from a single iron precursor.
    Guan N; Wang Y; Sun D; Xu J
    Nanotechnology; 2009 Mar; 20(10):105603. PubMed ID: 19417523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ZnO nanoparticles by solvothermal method and their ammonia sensing properties.
    Ghoshal T; Biswas S; Paul M; De SK
    J Nanosci Nanotechnol; 2009 Oct; 9(10):5973-80. PubMed ID: 19908483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel route to the formation of 3D nanoflower-like hierarchical iron oxide nanostructure.
    Ali G; Park YJ; Hussain A; Cho SO
    Nanotechnology; 2019 Mar; 30(9):095601. PubMed ID: 30523837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-source route for the synthesis of metal oxide nanoparticles using vegetable oil solvents.
    Pereira AS; Silva NJ; Trindade T; Pereira S
    J Nanosci Nanotechnol; 2012 Dec; 12(12):8963-8. PubMed ID: 23447945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties.
    Kozakova Z; Kuritka I; Kazantseva NE; Babayan V; Pastorek M; Machovsky M; Bazant P; Saha P
    Dalton Trans; 2015 Dec; 44(48):21099-108. PubMed ID: 26595518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hamaker constants of iron oxide nanoparticles.
    Faure B; Salazar-Alvarez G; Bergström L
    Langmuir; 2011 Jul; 27(14):8659-64. PubMed ID: 21644514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible superparamagnetic iron oxide nanoparticle dispersions stabilized with poly(ethylene glycol)-oligo(aspartic acid) hybrids.
    Wan S; Huang J; Guo M; Zhang H; Cao Y; Yan H; Liu K
    J Biomed Mater Res A; 2007 Mar; 80(4):946-54. PubMed ID: 17083116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed-mediated synthesis of iron oxide and gold/iron oxide nanoparticles.
    Nguyen DT; Park DW; Kim KS
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7214-7. PubMed ID: 22103160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature synthesis of rod-like FeC(2)O(4)·2H(2)O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition.
    Zhou W; Tang K; Zeng S; Qi Y
    Nanotechnology; 2008 Feb; 19(6):065602. PubMed ID: 21730700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Synthesis of Magnetite Porous/Hollow Nanoparticles Through a Template-Free Solvothermal Process.
    Nguyen DT; Park DW; Kim T; Kim KS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):591-4. PubMed ID: 26328409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells.
    Hu Y; Wu B; Jin Q; Wang X; Li Y; Sun Y; Huo J; Zhao X
    Talanta; 2016 May; 152():504-12. PubMed ID: 26992548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials.
    Park KH; Im SH; Park OO
    Nanotechnology; 2011 Jan; 22(4):045602. PubMed ID: 21157012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys.
    Arndt D; Zielasek V; Dreher W; Bäumer M
    J Colloid Interface Sci; 2014 Mar; 417():188-98. PubMed ID: 24407676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general nonaqueous route to binary metal oxide nanocrystals involving a C-C bond cleavage.
    Pinna N; Garnweitner G; Antonietti M; Niederberger M
    J Am Chem Soc; 2005 Apr; 127(15):5608-12. PubMed ID: 15826200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-controlled synthesis of cuprous oxide nanocrystals via the electrochemical route with H2O-polyol mix-solvent and their behaviors of adsorption.
    Yuan G; Zhu J; Xie F; Chang X
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5258-64. PubMed ID: 21125879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and properties of magnetite nanoparticles coated with poly(ethylene glycol) and poly(ethylene imine).
    Zhao F; Zhang B; Wang J; Tu Z
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6793-7. PubMed ID: 24245145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.