These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21121495)

  • 1. Recognition of military-specific physical activities with body-fixed sensors.
    Wyss T; Mäder U
    Mil Med; 2010 Nov; 175(11):858-64. PubMed ID: 21121495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambulatory physical activity in Swiss Army recruits.
    Wyss T; Scheffler J; Mäder U
    Int J Sports Med; 2012 Sep; 33(9):716-22. PubMed ID: 22706943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure estimation during daily military routine with body-fixed sensors.
    Wyss T; Mäder U
    Mil Med; 2011 May; 176(5):494-9. PubMed ID: 21634292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Employing body-fixed sensors and machine learning to predict physical activity in military personnel.
    Papadakis N; Havenetidis K; Papadopoulos D; Bissas A
    BMJ Mil Health; 2023 Apr; 169(2):152-156. PubMed ID: 33127870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.
    Arif M; Kattan A
    PLoS One; 2015; 10(7):e0130851. PubMed ID: 26203909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumented shoes for activity classification in the elderly.
    Moufawad el Achkar C; Lenoble-Hoskovec C; Paraschiv-Ionescu A; Major K; Büla C; Aminian K
    Gait Posture; 2016 Feb; 44():12-7. PubMed ID: 27004626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of the Actiheart for the assessment of energy expenditure in adults.
    Crouter SE; Churilla JR; Bassett DR
    Eur J Clin Nutr; 2008 Jun; 62(6):704-11. PubMed ID: 17440515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors.
    Wang Z; Jiang M; Hu Y; Li H
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):691-9. PubMed ID: 22614724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study.
    Awais M; Palmerini L; Bourke AK; Ihlen EA; Helbostad JL; Chiari L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree.
    Pärkkä J; Cluitmans L; Ermes M
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1211-5. PubMed ID: 20813625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a 7-week outdoor circuit training program on Swiss Army recruits.
    Hofstetter MC; Mäder U; Wyss T
    J Strength Cond Res; 2012 Dec; 26(12):3418-25. PubMed ID: 22190160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concept for a Predeployment Assessment of Basic Military Fitness in the German Armed Forces.
    Rohde U; Sievert A; Rüther T; Witzki A; Leyk D
    J Strength Cond Res; 2015 Nov; 29 Suppl 11():S211-5. PubMed ID: 26506190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Review and Meta-Analysis of Predictors of Military Task Performance: Maximal Lift Capacity.
    Hydren JR; Borges AS; Sharp MA
    J Strength Cond Res; 2017 Apr; 31(4):1142-1164. PubMed ID: 28135227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiorespiratory fitness estimation using wearable sensors: Laboratory and free-living analysis of context-specific submaximal heart rates.
    Altini M; Casale P; Penders J; Ten Velde G; Plasqui G; Amft O
    J Appl Physiol (1985); 2016 May; 120(9):1082-96. PubMed ID: 26940653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.