BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21121616)

  • 1. Vaults are dynamically unconstrained cytoplasmic nanoparticles capable of half vault exchange.
    Yang J; Kickhoefer VA; Ng BC; Gopal A; Bentolila LA; John S; Tolbert SH; Rome LH
    ACS Nano; 2010 Dec; 4(12):7229-40. PubMed ID: 21121616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted vault nanoparticles engineered with an endosomolytic peptide deliver biomolecules to the cytoplasm.
    Han M; Kickhoefer VA; Nemerow GR; Rome LH
    ACS Nano; 2011 Aug; 5(8):6128-37. PubMed ID: 21740042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of recombinant vault nanoparticles on solid substrates.
    Xia Y; Ramgopal Y; Li H; Shang L; Srinivas P; Kickhoefer VA; Rome LH; Preiser PR; Boey F; Zhang H; Venkatraman SS
    ACS Nano; 2010 Mar; 4(3):1417-24. PubMed ID: 20146454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryoelectron microscopy imaging of recombinant and tissue derived vaults: localization of the MVP N termini and VPARP.
    Mikyas Y; Makabi M; Raval-Fernandes S; Harrington L; Kickhoefer VA; Rome LH; Stewart PL
    J Mol Biol; 2004 Nov; 344(1):91-105. PubMed ID: 15504404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of vault-tubes: a dynamic interaction between vaults and vault PARP.
    van Zon A; Mossink MH; Schoester M; Houtsmuller AB; Scheffer GL; Scheper RJ; Sonneveld P; Wiemer EA
    J Cell Sci; 2003 Nov; 116(Pt 21):4391-400. PubMed ID: 13130096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaults: a ribonucleoprotein particle involved in drug resistance?
    Mossink MH; van Zon A; Scheper RJ; Sonneveld P; Wiemer EA
    Oncogene; 2003 Oct; 22(47):7458-67. PubMed ID: 14576851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vault mobility depends in part on microtubules and vaults can be recruited to the nuclear envelope.
    van Zon A; Mossink MH; Houtsmuller AB; Schoester M; Scheffer GL; Scheper RJ; Sonneveld P; Wiemer EA
    Exp Cell Res; 2006 Feb; 312(3):245-55. PubMed ID: 16310186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axonal transport of ribonucleoprotein particles (vaults).
    Li JY; Volknandt W; Dahlstrom A; Herrmann C; Blasi J; Das B; Zimmermann H
    Neuroscience; 1999; 91(3):1055-65. PubMed ID: 10391483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of large nucleoprotein particles, vaults.
    Tanaka H; Tsukihara T
    Proc Jpn Acad Ser B Phys Biol Sci; 2012; 88(8):416-33. PubMed ID: 23060231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vault Nanoparticles: Chemical Modifications for Imaging and Enhanced Delivery.
    Benner NL; Zang X; Buehler DC; Kickhoefer VA; Rome ME; Rome LH; Wender PA
    ACS Nano; 2017 Jan; 11(1):872-881. PubMed ID: 28029784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vault nanoparticles engineered with the protein transduction domain, TAT48, enhances cellular uptake.
    Yang J; Srinivasan A; Sun Y; Mrazek J; Shu Z; Kickhoefer VA; Rome LH
    Integr Biol (Camb); 2013 Jan; 5(1):151-8. PubMed ID: 22785558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The vault exterior shell is a dynamic structure that allows incorporation of vault-associated proteins into its interior.
    Poderycki MJ; Kickhoefer VA; Kaddis CS; Raval-Fernandes S; Johansson E; Zink JI; Loo JA; Rome LH
    Biochemistry; 2006 Oct; 45(39):12184-93. PubMed ID: 17002318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and assembly of human vault particles in yeast.
    Wang M; Kickhoefer VA; Rome LH; Foellmer OK; Mahendra S
    Biotechnol Bioeng; 2018 Dec; 115(12):2941-2950. PubMed ID: 30171681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea urchin vault structure, composition, and differential localization during development.
    Stewart PL; Makabi M; Lang J; Dickey-Sims C; Robertson AJ; Coffman JA; Suprenant KA
    BMC Dev Biol; 2005 Feb; 5():3. PubMed ID: 15710043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural stability of vault particles.
    Esfandiary R; Kickhoefer VA; Rome LH; Joshi SB; Middaugh CR
    J Pharm Sci; 2009 Apr; 98(4):1376-86. PubMed ID: 18683860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of vault nanocapsules with enzymatic and fluorescent properties.
    Kickhoefer VA; Garcia Y; Mikyas Y; Johansson E; Zhou JC; Raval-Fernandes S; Minoofar P; Zink JI; Dunn B; Stewart PL; Rome LH
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4348-52. PubMed ID: 15753293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioengineered vaults: self-assembling protein shell-lipophilic core nanoparticles for drug delivery.
    Buehler DC; Marsden MD; Shen S; Toso DB; Wu X; Loo JA; Zhou ZH; Kickhoefer VA; Wender PA; Zack JA; Rome LH
    ACS Nano; 2014 Aug; 8(8):7723-32. PubMed ID: 25061969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the vault particle as a platform technology.
    Rome LH; Kickhoefer VA
    ACS Nano; 2013 Feb; 7(2):889-902. PubMed ID: 23267674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular functions of vaults and their involvement in multidrug resistance.
    Steiner E; Holzmann K; Elbling L; Micksche M; Berger W
    Curr Drug Targets; 2006 Aug; 7(8):923-34. PubMed ID: 16918321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting vault nanoparticles to specific cell surface receptors.
    Kickhoefer VA; Han M; Raval-Fernandes S; Poderycki MJ; Moniz RJ; Vaccari D; Silvestry M; Stewart PL; Kelly KA; Rome LH
    ACS Nano; 2009 Jan; 3(1):27-36. PubMed ID: 19206245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.