These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21121674)

  • 1. Tuning the morphology of cellulose acetate gels by manipulating the mechanism of phase separation.
    Kadla JF; Korehei R
    Biomacromolecules; 2011 Jan; 12(1):43-9. PubMed ID: 21121674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system.
    Kadla JF; Korehei R
    Biomacromolecules; 2010 Apr; 11(4):1074-81. PubMed ID: 20235573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic behavior of cellulose acetate in a mixed solvent system.
    Appaw C; Gilbert RD; Khan SA; Kadla JF
    Biomacromolecules; 2007 May; 8(5):1541-7. PubMed ID: 17458930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique gelation behavior of cellulose in NaOH/urea aqueous solution.
    Cai J; Zhang L
    Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution.
    Guo Y; Zhou J; Zhang L
    Biomacromolecules; 2011 May; 12(5):1927-34. PubMed ID: 21476547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency- and temperature-dependent rheological properties of an amphiphilic block co-polymer in water and including cell-culture media.
    Zhang H; Ding J
    J Biomater Sci Polym Ed; 2010; 21(2):253-69. PubMed ID: 20092688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils.
    Sharma SC; Shrestha RG; Shrestha LK; Aramaki K
    J Phys Chem B; 2009 Feb; 113(6):1615-22. PubMed ID: 19193166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the structure of cellulose in LiCl/DMAc solution and its gelation behavior by small-angle X-ray scattering measurements.
    Ishii D; Tatsumi D; Matsumoto T; Murata K; Hayashi H; Yoshitani H
    Macromol Biosci; 2006 Apr; 6(4):293-300. PubMed ID: 16565944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological characterisation of primary and binary interactive bioadhesive gels composed of cellulose derivatives designed as ophthalmic viscosurgical devices.
    Andrews GP; Gorman SP; Jones DS
    Biomaterials; 2005 Feb; 26(5):571-80. PubMed ID: 15276365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes.
    Kuang QL; Zhao JC; Niu YH; Zhang J; Wang ZG
    J Phys Chem B; 2008 Aug; 112(33):10234-40. PubMed ID: 18661932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological behaviors in the regimes from dilute to concentrated in cellulose solutions dissolved at low temperature.
    Lue A; Zhang L
    Macromol Biosci; 2009 May; 9(5):488-96. PubMed ID: 19039777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants.
    Svensson AV; Huang L; Johnson ES; Nylander T; Piculell L
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2431-42. PubMed ID: 20356112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior and rheological properties of DNA-cationic polysaccharide mixtures.
    dos Santos S; Piculell L; Medronho B; Miguel MG; Lindman B
    J Colloid Interface Sci; 2012 Oct; 383(1):63-74. PubMed ID: 22795045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties and fractal analysis of acid-induced SPI gels at different ionic strength.
    Bi CH; Li D; Wang LJ; Adhikari B
    Carbohydr Polym; 2013 Jan; 92(1):98-105. PubMed ID: 23218271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological study of transient networks with junctions of limited multiplicity. II. Sol/gel transition and rheology.
    Indei T
    J Chem Phys; 2007 Oct; 127(14):144905. PubMed ID: 17935437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of human tracheobronchial mucin in aqueous solution.
    McCullagh CM; Jamieson AM; Blackwell J; Gupta R
    Biopolymers; 1995 Feb; 35(2):149-59. PubMed ID: 7696561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological properties and molecular structure of tunicate cellulose in LiCl/1,3-dimethyl-2-imidazolidinone.
    Tamai N; Tatsumi D; Matsumoto T
    Biomacromolecules; 2004; 5(2):422-32. PubMed ID: 15003002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.