BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21121722)

  • 1. Cranial bone defects: current and future strategies.
    Szpalski C; Barr J; Wetterau M; Saadeh PB; Warren SM
    Neurosurg Focus; 2010 Dec; 29(6):E8. PubMed ID: 21121722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits.
    Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J
    Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone regeneration in cranial defects previously treated with radiation.
    Nussenbaum B; Rutherford RB; Krebsbach PH
    Laryngoscope; 2005 Jul; 115(7):1170-7. PubMed ID: 15995502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of large cranial defects by hBMP-2 expressing bone marrow stromal cells: comparison between alginate and collagen type I systems.
    Chang SC; Chung HY; Tai CL; Chen PK; Lin TM; Jeng LB
    J Biomed Mater Res A; 2010 Aug; 94(2):433-41. PubMed ID: 20186742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of critical size defects in the rabbit calvarium with the use of a novel scaffold material.
    Shand JM; Heggie AA; Portnof J
    Ann R Australas Coll Dent Surg; 2010 Mar; 20():71-4. PubMed ID: 22046741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs.
    Lyons FG; Al-Munajjed AA; Kieran SM; Toner ME; Murphy CM; Duffy GP; O'Brien FJ
    Biomaterials; 2010 Dec; 31(35):9232-43. PubMed ID: 20863559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone healing with oxytocin-loaded microporous β-TCP bone substitute in ectopic bone formation model and critical-sized osseous defect of rat.
    Park JW; Kim JM; Lee HJ; Jeong SH; Suh JY; Hanawa T
    J Clin Periodontol; 2014 Feb; 41(2):181-90. PubMed ID: 24256613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects.
    El Backly RM; Zaky SH; Canciani B; Saad MM; Eweida AM; Brun F; Tromba G; Komlev VS; Mastrogiacomo M; Marei MK; Cancedda R
    J Craniomaxillofac Surg; 2014 Jul; 42(5):e70-9. PubMed ID: 23932544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaffolds for the repair of bone defects in clinical studies: a systematic review.
    Zeng JH; Liu SW; Xiong L; Qiu P; Ding LH; Xiong SL; Li JT; Liao XG; Tang ZM
    J Orthop Surg Res; 2018 Feb; 13(1):33. PubMed ID: 29433544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of platelet-rich plasma and chitosan combination on bone regeneration in experimental rabbit cranial defects.
    Oktay EO; Demiralp B; Demiralp B; Senel S; Cevdet Akman A; Eratalay K; Akincibay H
    J Oral Implantol; 2010; 36(3):175-84. PubMed ID: 20553171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional macroporous materials for tissue engineering of craniofacial bone.
    Shakya AK; Kandalam U
    Br J Oral Maxillofac Surg; 2017 Nov; 55(9):875-891. PubMed ID: 29056355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold modeling application in the repair of skull defects.
    Wan W; Shi P
    Artif Organs; 2010 Apr; 34(4):339-42. PubMed ID: 19663864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone Tissue Engineering Challenges in Oral & Maxillofacial Surgery.
    Smith BT; Shum J; Wong M; Mikos AG; Young S
    Adv Exp Med Biol; 2015; 881():57-78. PubMed ID: 26545744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds.
    Bi L; Zobell B; Liu X; Rahaman MN; Bonewald LF
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():816-24. PubMed ID: 25063184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone repair in the twenty-first century: biology, chemistry or engineering?
    Hing KA
    Philos Trans A Math Phys Eng Sci; 2004 Dec; 362(1825):2821-50. PubMed ID: 15539372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques.
    Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR
    J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects.
    Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the ratio of particulate autogenous bone graft/platelet-rich plasma on bone healing in critical-size defects: a histologic and histometric study in rat calvaria.
    Nagata MJ; Messora M; Pola N; Campos N; Vieira R; Esper LA; Sbrana M; Fucini S; Garcia V; Bosco A
    J Orthop Res; 2010 Apr; 28(4):468-73. PubMed ID: 19890994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.