BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21121814)

  • 1. The effect of reductive ventricular osmotherapy on the osmolarity of artificial cerebrospinal fluid and the water content of cerebral tissue ex vivo.
    Odland RM; Panter SS; Rockswold GL
    J Neurotrauma; 2011 Jan; 28(1):135-42. PubMed ID: 21121814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of reductive ventricular osmotherapy in a swine model of traumatic brain injury.
    Odland RM; Venugopal S; Borgos J; Coppes V; McKinney AM; Rockswold G; Shi J; Panter S
    Neurosurgery; 2012 Feb; 70(2):445-54; discussion 455. PubMed ID: 21826032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of changes in serum osmolarity on bulk flow of fluid into cerebral ventricles and on brain water content.
    DiMattio J; Hochwald GM; Malhan C; Wald A
    Pflugers Arch; 1975 Sep; 359(3):253-64. PubMed ID: 1103083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sink action of cerebrospinal fluid volume flow. Effect on brain water content.
    Hochwald GM; Wald A; Malhan C
    Arch Neurol; 1976 May; 33(5):339-44. PubMed ID: 1267619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces.
    Buishas J; Gould IG; Linninger AA
    Croat Med J; 2014 Oct; 55(5):481-97. PubMed ID: 25358881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in spinal fluid osmolarity induced by mannitol.
    Polderman KH; van de Kraats G; Dixon JM; Vandertop WP; Girbes AR
    Crit Care Med; 2003 Feb; 31(2):584-90. PubMed ID: 12576970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral influx of Na
    Oernbo EK; Lykke K; Steffensen AB; Töllner K; Kruuse C; Rath MF; Löscher W; MacAulay N
    Fluids Barriers CNS; 2018 Sep; 15(1):27. PubMed ID: 30249273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tooth pulp and periaqueductal central gray electrical stimulation on β-endorphin release into the fluid perfusing the cerebral ventricles in rats.
    Zubrzycka M; Janecka A
    Brain Res; 2011 Aug; 1405():15-22. PubMed ID: 21741622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperosmosis of cerebral injury.
    Odland RM; Sutton RL
    Neurol Res; 1999 Jul; 21(5):500-8. PubMed ID: 10439432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary perfusate composition influences diastolic properties, myocardial water content, and histologic characteristics of the rat left ventricle.
    Starr JP; Jia CX; Amirhamzeh MM; Rabkin DG; Hart JP; Hsu DT; Fisher PE; Szabolcs M; Spotnitz HM
    Ann Thorac Surg; 1999 Sep; 68(3):925-30. PubMed ID: 10509985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of osmolarity on CSF volume during ventriculo-aqueductal and ventriculo-cisternal perfusions in cats.
    Maraković J; Oresković D; Rados M; Vukić M; Jurjević I; Chudy D; Klarica M
    Neurosci Lett; 2010 Oct; 484(2):93-7. PubMed ID: 20674671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increases in lung and brain water following experimental stroke: effect of mannitol and hypertonic saline.
    Toung TJ; Chang Y; Lin J; Bhardwaj A
    Crit Care Med; 2005 Jan; 33(1):203-8; discussion 259-60. PubMed ID: 15644670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of tissue edema by microdialysis.
    Odland RM; Umeda A; Stevens S; Heinrich J; Rowe M
    Arch Otolaryngol Head Neck Surg; 1995 Jun; 121(6):662-6. PubMed ID: 7772320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New scheme for the preparation and use of artificial cerebrospinal fluid.
    Zheng WH; Yan C; Chen T; Kang DZ
    J Physiol Pharmacol; 2020 Dec; 71(6):. PubMed ID: 33902002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoamine Neurotransmitter Metabolite Concentration as a Marker of Cerebrospinal Fluid Volume Changes.
    Maraković J; Vukić M; Radoš M; Chudy D; Klarica M; Orešković D
    Acta Neurochir Suppl; 2016; 122():283-6. PubMed ID: 27165922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The investigation of cerebrospinal fluid formation by ventriculo-aqueductal perfusion method in cats.
    Oreskovikić D; Vukić M; Klarica M; Bulat M
    Acta Neurochir Suppl; 2005; 95():433-6. PubMed ID: 16463897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated CSF osmolality inhibits thermoregulatory heat loss responses.
    Turlejska E; Baker MA
    Am J Physiol; 1986 Oct; 251(4 Pt 2):R749-54. PubMed ID: 3766775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of ventricular fluid osmolality on bulk flow of nascent fluid into the cerebral ventricles of cats.
    Wald A; Hochwald GM; Malhan C
    Exp Brain Res; 1976 May; 25(2):157-67. PubMed ID: 945183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmolarity of prevalent eye drops, side effects, and therapeutic approaches.
    Dutescu RM; Panfil C; Schrage N
    Cornea; 2015 May; 34(5):560-6. PubMed ID: 25789693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotein dynamics in the cerebrospinal fluid: intraindividual concomitant ventricular and lumbar measurements.
    Brandner S; Thaler C; Lewczuk P; Lelental N; Buchfelder M; Kleindienst A
    Eur Neurol; 2013; 70(3-4):189-94. PubMed ID: 23969528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.