These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 21121961)
1. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy. Park CH; Lee CS; Kim YJ; Jang JH; Suh JY; Park JW Clin Oral Implants Res; 2011 Jul; 22(7):735-742. PubMed ID: 21121961 [TBL] [Abstract][Full Text] [Related]
2. Titanium alloys: in vitro biological analyzes on biofilm formation, biocompatibility, cell differentiation to induce bone formation, and immunological response. Mello DCR; de Oliveira JR; Cairo CAA; Ramos LSB; Vegian MRDC; de Vasconcellos LGO; de Oliveira FE; de Oliveira LD; de Vasconcellos LMR J Mater Sci Mater Med; 2019 Sep; 30(9):108. PubMed ID: 31535222 [TBL] [Abstract][Full Text] [Related]
3. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection. Aguilera-Correa JJ; Conde A; Arenas MA; de-Damborenea JJ; Marin M; Doadrio AL; Esteban J Biomed Mater; 2017 Aug; 12(4):045022. PubMed ID: 28799523 [TBL] [Abstract][Full Text] [Related]
4. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications. Hu H; Zhang L; He Z; Jiang Y; Tan J Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical and biocompatibility examinations of high-pressure torsion processed titanium and Ti-13Nb-13Zr alloy. Dimić I; Cvijović-Alagić I; Hohenwarter A; Pippan R; Kojić V; Bajat J; Rakin M J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1097-1107. PubMed ID: 28503902 [TBL] [Abstract][Full Text] [Related]
6. Conjoint corrosion and wear in titanium alloys. Khan MA; Williams RL; Williams DF Biomaterials; 1999 Apr; 20(8):765-72. PubMed ID: 10353659 [TBL] [Abstract][Full Text] [Related]
7. Development of a low elastic modulus and antibacterial Ti-13Nb-13Zr-5Cu titanium alloy by microstructure controlling. Shi A; Cai D; Hu J; Zhao X; Qin G; Han Y; Zhang E Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112116. PubMed ID: 34082933 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation. Michalska J; Sowa M; Piotrowska M; Widziołek M; Tylko G; Dercz G; Socha RP; Osyczka AM; Simka W Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109957. PubMed ID: 31500028 [TBL] [Abstract][Full Text] [Related]
9. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Khan MA; Williams RL; Williams DF Biomaterials; 1999 Apr; 20(7):631-7. PubMed ID: 10208405 [TBL] [Abstract][Full Text] [Related]
10. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty. Davidson JA; Mishra AK; Kovacs P; Poggie RA Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871 [TBL] [Abstract][Full Text] [Related]
11. Mechanical Properties and Residual Stress Measurements of Grade IV Titanium and Ti-6Al-4V and Ti-13Nb-13Zr Titanium Alloys after Laser Treatment. Jażdżewska M; Kwidzińska DB; Seyda W; Fydrych D; Zieliński A Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771847 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured Ti-13Nb-13Zr alloy for implant application-material scientific, technological, and biological aspects. Klinge L; Kluy L; Spiegel C; Siemers C; Groche P; Coraça-Huber D Front Bioeng Biotechnol; 2023; 11():1255947. PubMed ID: 37691899 [TBL] [Abstract][Full Text] [Related]
13. Mechanical response and microstructural evolution of Ti-13Zr-13Nb biomedical alloy under high strain rate load. Chen TH; Lin SY Technol Health Care; 2015; 24 Suppl 1():S171-7. PubMed ID: 26409553 [TBL] [Abstract][Full Text] [Related]
14. In vivo study of stainless steel and Ti-13Nb-13Zr bone plates in a sheep model. Seligson D; Mehta S; Mishra AK; FitzGerald TJ; Castleman DW; James AH; Voor MJ; Been J; Nawab A Clin Orthop Relat Res; 1997 Oct; (343):213-23. PubMed ID: 9345227 [TBL] [Abstract][Full Text] [Related]
15. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Park JW; Kim YJ; Park CH; Lee DH; Ko YG; Jang JH; Lee CS Acta Biomater; 2009 Oct; 5(8):3272-80. PubMed ID: 19426841 [TBL] [Abstract][Full Text] [Related]
16. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. Lin CW; Ju CP; Chern Lin JH Biomaterials; 2005 Jun; 26(16):2899-907. PubMed ID: 15603785 [TBL] [Abstract][Full Text] [Related]
18. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy. Bobbili R; Madhu V J Mech Behav Biomed Mater; 2016 Jun; 59():146-155. PubMed ID: 26766326 [TBL] [Abstract][Full Text] [Related]
19. Tribological and corrosion behaviors of warm-and hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions. Lee T; Mathew E; Rajaraman S; Manivasagam G; Singh AK; Lee CS Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):207-12. PubMed ID: 26491322 [TBL] [Abstract][Full Text] [Related]
20. Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing. Wu J; Lin X; Qiao H; Zhao J; Ding W; Zhu R Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]