BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21122813)

  • 21. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana.
    Schuster J; Binder S
    Plant Mol Biol; 2005 Jan; 57(2):241-54. PubMed ID: 15821880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements.
    Carroll JD; Pastuszak I; Edavana VK; Pan YT; Elbein AD
    FEBS J; 2007 Apr; 274(7):1701-14. PubMed ID: 17319935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation.
    Fragoso S; Espíndola L; Páez-Valencia J; Gamboa A; Camacho Y; Martínez-Barajas E; Coello P
    Plant Physiol; 2009 Apr; 149(4):1906-16. PubMed ID: 19211700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and characterization of two NAD kinases from Arabidopsis. identification of a calmodulin binding isoform.
    Turner WL; Waller JC; Vanderbeld B; Snedden WA
    Plant Physiol; 2004 Jul; 135(3):1243-55. PubMed ID: 15247403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of photosynthesis in isolated spinach chloroplasts by inorganic phosphate or inorganic pyrophosphatase in the presence of pyrophosphate and magnesium ions.
    Levine G; Bassham JA
    Biochim Biophys Acta; 1974 Jan; 333(1):136-40. PubMed ID: 19397000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and computational dissection of the catalytic mechanism of the inorganic pyrophosphatase from Mycobacterium tuberculosis.
    Pratt AC; Dewage SW; Pang AH; Biswas T; Barnard-Britson S; Cisneros GA; Tsodikov OV
    J Struct Biol; 2015 Oct; 192(1):76-87. PubMed ID: 26296329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis.
    Xu Q; Fu HH; Gupta R; Luan S
    Plant Cell; 1998 May; 10(5):849-57. PubMed ID: 9596642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and characterization of Arabidopsis thaliana pyridoxal kinase.
    Lum HK; Kwok F; Lo SC
    Planta; 2002 Sep; 215(5):870-9. PubMed ID: 12244454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel calcium-dependent soluble inorganic pyrophosphatase from the trypanosomatid Leishmania major.
    Gómez-García MR; Ruiz-Pérez LM; González-Pacanowska D; Serrano A
    FEBS Lett; 2004 Feb; 560(1-3):158-66. PubMed ID: 14988016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical and structural characterization of the Arabidopsis bifunctional enzyme dethiobiotin synthetase-diaminopelargonic acid aminotransferase: evidence for substrate channeling in biotin synthesis.
    Cobessi D; Dumas R; Pautre V; Meinguet C; Ferrer JL; Alban C
    Plant Cell; 2012 Apr; 24(4):1608-25. PubMed ID: 22547782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1.1 confers salt tolerance on transgenic poplar.
    Yang Y; Tang RJ; Li B; Wang HH; Jin YL; Jiang CM; Bao Y; Su HY; Zhao N; Ma XJ; Yang L; Chen SL; Cheng XH; Zhang HX
    Tree Physiol; 2015 Jun; 35(6):663-77. PubMed ID: 25877769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction.
    Holk A; Rietz S; Zahn M; Quader H; Scherer GF
    Plant Physiol; 2002 Sep; 130(1):90-101. PubMed ID: 12226489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance.
    Simões I; Faro R; Bur D; Faro C
    J Biol Chem; 2007 Oct; 282(43):31358-65. PubMed ID: 17650510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural insights into the mechanism defining substrate affinity in Arabidopsis thaliana dUTPase: the role of tryptophan 93 in ligand orientation.
    Inoguchi N; Chaiseeda K; Yamanishi M; Kim MK; Jang Y; Bajaj M; Chia CP; Becker DF; Moriyama H
    BMC Res Notes; 2015 Dec; 8():784. PubMed ID: 26666293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A cationic cluster of amino acid residues of inorganic pyrophosphatase from Escherichia coli as a possible site of effector binding].
    Sitnik TS; Avaeva SM
    Bioorg Khim; 2005; 31(3):251-8. PubMed ID: 16004383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of a cis,trans-mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana.
    Kera K; Takahashi S; Sutoh T; Koyama T; Nakayama T
    FEBS J; 2012 Oct; 279(20):3813-27. PubMed ID: 22883514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana.
    Tran HT; Qian W; Hurley BA; She YM; Wang D; Plaxton WC
    Plant Cell Environ; 2010 Nov; 33(11):1789-803. PubMed ID: 20545876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inorganic pyrophosphatases of Family II-two decades after their discovery.
    Baykov AA; Anashkin VA; Salminen A; Lahti R
    FEBS Lett; 2017 Oct; 591(20):3225-3234. PubMed ID: 28986979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains.
    Rippert P; Matringe M
    Plant Mol Biol; 2002 Mar; 48(4):361-8. PubMed ID: 11905963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of MKK9-MPK3/MPK6 enhances phosphate acquisition in Arabidopsis thaliana.
    Lei L; Li Y; Wang Q; Xu J; Chen Y; Yang H; Ren D
    New Phytol; 2014 Sep; 203(4):1146-1160. PubMed ID: 24865627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.