BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 21122863)

  • 1. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior.
    Schmitt C; Hadj Henni A; Cloutier G
    J Biomech; 2011 Feb; 44(4):622-9. PubMed ID: 21122863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic properties of human cerebellum using magnetic resonance elastography.
    Zhang J; Green MA; Sinkus R; Bilston LE
    J Biomech; 2011 Jul; 44(10):1909-13. PubMed ID: 21565346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity.
    Klatt D; Hamhaber U; Asbach P; Braun J; Sack I
    Phys Med Biol; 2007 Dec; 52(24):7281-94. PubMed ID: 18065839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic shear properties of in vivo thigh muscles measured by MR elastography.
    Chakouch MK; Pouletaut P; Charleux F; Bensamoun SF
    J Magn Reson Imaging; 2016 Jun; 43(6):1423-33. PubMed ID: 26605873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between classical rheometry and supersonic shear wave imaging in blood clots.
    Bernal M; Gennisson JL; Flaud P; Tanter M
    Ultrasound Med Biol; 2013 Nov; 39(11):2123-36. PubMed ID: 23972484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.
    Budelli E; Brum J; Bernal M; Deffieux T; Tanter M; Lema P; Negreira C; Gennisson JL
    Phys Med Biol; 2017 Jan; 62(1):91-106. PubMed ID: 27973354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft glass rheology in liquid crystalline gels formed by a monodisperse dipeptide.
    Nair GG; Krishna Prasad S; Bhargavi R; Jayalakshmi V; Shanker G; Yelamaggad CV
    J Phys Chem B; 2010 Jan; 114(2):697-704. PubMed ID: 20028007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo brain viscoelastic properties measured by magnetic resonance elastography.
    Green MA; Bilston LE; Sinkus R
    NMR Biomed; 2008 Aug; 21(7):755-64. PubMed ID: 18457350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-strain dynamic rheology of food protein networks.
    Tunick MH
    J Agric Food Chem; 2011 Mar; 59(5):1481-6. PubMed ID: 20604509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis.
    Reiter R; Freise C; Jöhrens K; Kamphues C; Seehofer D; Stockmann M; Somasundaram R; Asbach P; Braun J; Samani A; Sack I
    J Biomech; 2014 May; 47(7):1665-74. PubMed ID: 24657103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method.
    Ouared A; Kazemirad S; Montagnon E; Cloutier G
    Med Phys; 2016 Apr; 43(4):1603. PubMed ID: 27036560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-range dynamic magnetic resonance elastography.
    Riek K; Klatt D; Nuzha H; Mueller S; Neumann U; Sack I; Braun J
    J Biomech; 2011 Apr; 44(7):1380-6. PubMed ID: 21295305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear linear behavior of brain tissue over a large frequency range.
    Nicolle S; Lounis M; Willinger R; Palierne JF
    Biorheology; 2005; 42(3):209-23. PubMed ID: 15894820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homocysteine modifies fibrin clot deformability: another possible explanation of harm.
    Rojas AM; Kordich L; Lauricella AM
    Biorheology; 2009; 46(5):379-87. PubMed ID: 19940354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fractional derivative model to describe arterial viscoelasticity.
    Craiem D; Armentano RL
    Biorheology; 2007; 44(4):251-63. PubMed ID: 18094449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound dynamic micro-elastography applied to the viscoelastic characterization of soft tissues and arterial walls.
    Schmitt C; Hadj Henni A; Cloutier G
    Ultrasound Med Biol; 2010 Sep; 36(9):1492-503. PubMed ID: 20800176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of concentration and temperature on the rheological behavior of collagen solution.
    Lai G; Li Y; Li G
    Int J Biol Macromol; 2008 Apr; 42(3):285-91. PubMed ID: 18275999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian dynamics study of gel-forming colloidal particles.
    Santos PH; Campanella OH; Carignano MA
    J Phys Chem B; 2010 Oct; 114(41):13052-8. PubMed ID: 20873800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.