These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21122887)

  • 1. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects.
    Cullen LG; Tilston EL; Mitchell GR; Collins CD; Shaw LJ
    Chemosphere; 2011 Mar; 82(11):1675-82. PubMed ID: 21122887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil.
    Tilston EL; Collins CD; Mitchell GR; Princivalle J; Shaw LJ
    Environ Pollut; 2013 Feb; 173():38-46. PubMed ID: 23202280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles.
    Chang MC; Kang HY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms.
    Ševců A; El-Temsah YS; Filip J; Joner EJ; Bobčíková K; Černík M
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21191-21202. PubMed ID: 28733821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish.
    Chen PJ; Wu WL; Wu KC
    Water Res; 2013 Aug; 47(12):3899-909. PubMed ID: 23548565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.
    Velimirovic M; Larsson PO; Simons Q; Bastiaens L
    Chemosphere; 2013 Nov; 93(9):2040-5. PubMed ID: 23962383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach.
    Tosco T; Sethi R
    Environ Sci Technol; 2010 Dec; 44(23):9062-8. PubMed ID: 21058641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants.
    Ma J; He D; Collins RN; He C; Waite TD
    Water Res; 2016 Nov; 105():331-340. PubMed ID: 27639342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent.
    Gómez-Sagasti MT; Epelde L; Anza M; Urra J; Alkorta I; Garbisu C
    J Hazard Mater; 2019 Feb; 364():591-599. PubMed ID: 30390579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum.
    Vecchia ED; Luna M; Sethi R
    Environ Sci Technol; 2009 Dec; 43(23):8942-7. PubMed ID: 19943670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale zerovalent iron particles induce differential cytotoxicity, genotoxicity, oxidative stress and hemolytic responses in human lymphocytes and erythrocytes in vitro.
    Ghosh I; Mukherjee A; Mukherjee A
    J Appl Toxicol; 2019 Dec; 39(12):1623-1639. PubMed ID: 31355497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups.
    Jiang Z; Lv L; Zhang W; Du Q; Pan B; Yang L; Zhang Q
    Water Res; 2011 Mar; 45(6):2191-8. PubMed ID: 21316071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.
    Chen J; Xiu Z; Lowry GV; Alvarez PJ
    Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.
    El-Temsah YS; Joner EJ
    Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach.
    Fajardo C; Ortíz LT; Rodríguez-Membibre ML; Nande M; Lobo MC; Martin M
    Chemosphere; 2012 Feb; 86(8):802-8. PubMed ID: 22169206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.
    Katsenovich YP; Miralles-Wilhelm FR
    Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles.
    Fajardo C; Saccà ML; Martinez-Gomariz M; Costa G; Nande M; Martin M
    Chemosphere; 2013 Oct; 93(6):1077-83. PubMed ID: 23816452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment.
    Velimirovic M; Simons Q; Bastiaens L
    Chemosphere; 2015 Sep; 134():338-45. PubMed ID: 25973858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity.
    Li J; Rajajayavel SRC; Ghoshal S
    Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.
    Velimirovic M; Carniato L; Simons Q; Schoups G; Seuntjens P; Bastiaens L
    J Hazard Mater; 2014 Apr; 270():18-26. PubMed ID: 24525160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.