These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 21123036)
1. Immobilization of anti-CD31 antibody on electrospun poly(ɛ-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Zhang M; Wang Z; Wang Z; Feng S; Xu H; Zhao Q; Wang S; Fang J; Qiao M; Kong D Colloids Surf B Biointerfaces; 2011 Jun; 85(1):32-9. PubMed ID: 21123036 [TBL] [Abstract][Full Text] [Related]
2. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
3. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216 [TBL] [Abstract][Full Text] [Related]
4. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells. Gopinathan J; Quigley AF; Bhattacharyya A; Padhye R; Kapsa RM; Nayak R; Shanks RA; Houshyar S J Biomed Mater Res A; 2016 Apr; 104(4):853-65. PubMed ID: 26646762 [TBL] [Abstract][Full Text] [Related]
5. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone). Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759 [TBL] [Abstract][Full Text] [Related]
6. Highly stable surface modifications of poly(3-caprolactone) (PCL) films by molecular self-assembly to promote cells adhesion and proliferation. Wang Z; Wang H; Zheng W; Zhang J; Zhao Q; Wang S; Yang Z; Kong D Chem Commun (Camb); 2011 Aug; 47(31):8901-3. PubMed ID: 21629915 [TBL] [Abstract][Full Text] [Related]
7. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Schnell E; Klinkhammer K; Balzer S; Brook G; Klee D; Dalton P; Mey J Biomaterials; 2007 Jul; 28(19):3012-25. PubMed ID: 17408736 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells. Seyednejad H; Vermonden T; Fedorovich NE; van Eijk R; van Steenbergen MJ; Dhert WJ; van Nostrum CF; Hennink WE Biomacromolecules; 2009 Nov; 10(11):3048-54. PubMed ID: 19807059 [TBL] [Abstract][Full Text] [Related]
10. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications. Coverdale BDM; Gough JE; Sampson WW; Hoyland JA J Biomed Mater Res A; 2017 Oct; 105(10):2865-2874. PubMed ID: 28608414 [TBL] [Abstract][Full Text] [Related]
11. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions. Ozkan O; Turkoglu Sasmazel H J Biosci Bioeng; 2016 Aug; 122(2):232-9. PubMed ID: 26906227 [TBL] [Abstract][Full Text] [Related]
12. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Ma Z; He W; Yong T; Ramakrishna S Tissue Eng; 2005; 11(7-8):1149-58. PubMed ID: 16144451 [TBL] [Abstract][Full Text] [Related]
13. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Ranjbar-Mohammadi M; Bahrami SH Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation. Cheng CC; Lee DJ; Chen JK Acta Biomater; 2017 Mar; 50():476-483. PubMed ID: 28003144 [TBL] [Abstract][Full Text] [Related]
15. Coating of hydrophobins on three-dimensional electrospun poly(lactic-co-glycolic acid) scaffolds for cell adhesion. Hou S; Li X; Li X; Feng X Biofabrication; 2009 Sep; 1(3):035004. PubMed ID: 20811108 [TBL] [Abstract][Full Text] [Related]
16. Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. Cheng Z; Teoh SH Biomaterials; 2004 May; 25(11):1991-2001. PubMed ID: 14741613 [TBL] [Abstract][Full Text] [Related]
17. The loading of C-type natriuretic peptides improved hemocompatibility and vascular regeneration of electrospun poly(ε-caprolactone) grafts. Li J; Zhuo N; Zhang J; Sun Q; Si J; Wang K; Zhi D Acta Biomater; 2022 Oct; 151():304-316. PubMed ID: 36002127 [TBL] [Abstract][Full Text] [Related]
18. Design of antibacterial biointerfaces by surface modification of poly (ε-caprolactone) with fusion protein containing hydrophobin and PA-1. Wang X; Mao J; Chen Y; Song D; Gao Z; Zhang X; Bai Y; Saris PEJ; Feng H; Xu H; Qiao M Colloids Surf B Biointerfaces; 2017 Mar; 151():255-263. PubMed ID: 28027492 [TBL] [Abstract][Full Text] [Related]
19. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
20. Effect of carbon nanotube coating of aligned nanofibrous polymer scaffolds on the neurite outgrowth of PC-12 cells. Jin GZ; Kim M; Shin US; Kim HW Cell Biol Int; 2011 Jul; 35(7):741-5. PubMed ID: 21332449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]