These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21123036)

  • 21. Preparation and characterization of Lignin-graft-poly (ɛ-caprolactone) copolymers based on lignocellulosic butanol residue.
    Liu X; Zong E; Jiang J; Fu S; Wang J; Xu B; Li W; Lin X; Xu Y; Wang C; Chu F
    Int J Biol Macromol; 2015 Nov; 81():521-9. PubMed ID: 26306414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering.
    Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y
    J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.
    Jing X; Mi HY; Wang XC; Peng XF; Turng LS
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering.
    Ku SH; Park CB
    Biomaterials; 2010 Dec; 31(36):9431-7. PubMed ID: 20880578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced adhesion of preosteoblasts inside 3D PCL scaffolds by polydopamine coating and mineralization.
    Jo S; Kang SM; Park SA; Kim WD; Kwak J; Lee H
    Macromol Biosci; 2013 Oct; 13(10):1389-95. PubMed ID: 23861256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.
    Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and Application of a 3D-Printed Poly-
    Wang S; Li R; Xu Y; Xia D; Zhu Y; Yoon J; Gu R; Liu X; Zhao W; Zhao X; Liu Y; Sun Y; Zhou Y
    Biomed Res Int; 2020; 2020():2087475. PubMed ID: 32083125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(epsilon-caprolactone) nanofiber scaffolds.
    Hashemi SM; Soleimani M; Zargarian SS; Haddadi-Asl V; Ahmadbeigi N; Soudi S; Gheisari Y; Hajarizadeh A; Mohammadi Y
    Cells Tissues Organs; 2009; 190(3):135-49. PubMed ID: 19092233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering.
    Du F; Wang H; Zhao W; Li D; Kong D; Yang J; Zhang Y
    Biomaterials; 2012 Jan; 33(3):762-70. PubMed ID: 22056285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture.
    Li Q; Wang Z; Zhang S; Zheng W; Zhao Q; Zhang J; Wang L; Wang S; Kong D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1646-53. PubMed ID: 23827619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repetitive Arg-Gly-Asp peptide as a cell-stimulating agent on electrospun poly(ϵ-caprolactone) scaffold for tissue engineering.
    Chaisri P; Chingsungnoen A; Siri S
    Biotechnol J; 2013 Nov; 8(11):1323-31. PubMed ID: 24039086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of thermoplastic ductile films of chitin butyrate/poly(ɛ-caprolactone) blends and their cytocompatibility.
    Hashiwaki H; Teramoto Y; Nishio Y
    Carbohydr Polym; 2014 Dec; 114():330-338. PubMed ID: 25263898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles.
    Larrañaga A; Diamanti E; Rubio E; Palomares T; Alonso-Varona A; Aldazabal P; Martin FJ; Sarasua JR
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():451-60. PubMed ID: 25063141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and evaluation of axially aligned nanofibres for blood vessel tissue engineering.
    Sankaran KK; Vasanthan KS; Krishnan UM; Sethuraman S
    J Tissue Eng Regen Med; 2014 Aug; 8(8):640-51. PubMed ID: 22807125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of epsilon-caprolactone in the presence of poly(ethylene glycol).
    Huang MH; Li S; Hutmacher DW; Schantz JT; Vacanti CA; Braud C; Vert M
    J Biomed Mater Res A; 2004 Jun; 69(3):417-27. PubMed ID: 15127388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The performance of poly-epsilon-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4.
    Savarino L; Baldini N; Greco M; Capitani O; Pinna S; Valentini S; Lombardo B; Esposito MT; Pastore L; Ambrosio L; Battista S; Causa F; Zeppetelli S; Guarino V; Netti PA
    Biomaterials; 2007 Jul; 28(20):3101-9. PubMed ID: 17412415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of cell adhesion receptors in human osteoblasts cultured on biofunctionalized poly-(epsilon-caprolactone) surfaces.
    Amato I; Ciapetti G; Pagani S; Marletta G; Satriano C; Baldini N; Granchi D
    Biomaterials; 2007 Sep; 28(25):3668-78. PubMed ID: 17524476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.