These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21123279)

  • 1. Functionalized bridged silsesquioxane-based nanostructured microspheres: performance as novel drug-delivery devices in bone tissue-related applications.
    Romeo HE; Fanovich MA
    J Biomater Appl; 2012 May; 26(8):987-1012. PubMed ID: 21123279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized bridged silsesquioxane-based nanostructured microspheres: ultrasound-assisted synthesis and in vitro cytotoxicity characterization.
    Romeo HE; Cameo M; Choren MV; Fanovich MA
    J Mater Sci Mater Med; 2011 Apr; 22(4):935-43. PubMed ID: 21424215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel sol-gel organic-inorganic hybrid materials for drug delivery.
    Catauro M; Verardi D; Melisi D; Belotti F; Mustarelli P
    J Appl Biomater Biomech; 2010; 8(1):42-51. PubMed ID: 20740421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics.
    Habraken WJ; Wolke JG; Mikos AG; Jansen JA
    J Biomater Sci Polym Ed; 2008; 19(9):1171-88. PubMed ID: 18727859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles.
    Félix Lanao RP; Leeuwenburgh SC; Wolke JG; Jansen JA
    Biomaterials; 2011 Dec; 32(34):8839-47. PubMed ID: 21871661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response.
    Perez RA; Kim TH; Kim M; Jang JH; Ginebra MP; Kim HW
    J Biomed Mater Res A; 2013 Apr; 101(4):923-31. PubMed ID: 22962037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium phosphate-alginate microspheres as enzyme delivery matrices.
    Ribeiro CC; Barrias CC; Barbosa MA
    Biomaterials; 2004 Aug; 25(18):4363-73. PubMed ID: 15046927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres.
    Qi X; Ye J; Wang Y
    Acta Biomater; 2008 Nov; 4(6):1837-45. PubMed ID: 18555756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated calcium phosphate cement degradation due to incorporation of glucono-delta-lactone microparticles.
    Félix Lanao RP; Sariibrahimoglu K; Wang H; Wolke JG; Jansen JA; Leeuwenburgh SC
    Tissue Eng Part A; 2014 Jan; 20(1-2):378-88. PubMed ID: 24041246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements.
    Canal C; Pastorino D; Mestres G; Schuler P; Ginebra MP
    Acta Biomater; 2013 Sep; 9(9):8403-12. PubMed ID: 23707499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a novel osteoporotic drug delivery system in vitro: alendronate-loaded calcium phosphate cement.
    Jindong Z; Hai T; Junchao G; Bo W; Li B; Qiang WB
    Orthopedics; 2010 Aug; 33(8):. PubMed ID: 20704104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration.
    Wu F; Wei J; Guo H; Chen F; Hong H; Liu C
    Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction of gelatin microspheres into an injectable calcium phosphate cement.
    Habraken WJ; de Jonge LT; Wolke JG; Yubao L; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2008 Dec; 87(3):643-55. PubMed ID: 18189298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.
    Kumta PN; Sfeir C; Lee DH; Olton D; Choi D
    Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sol-gel processing of anti-inflammatory entrapment in silica, release kinetics, and bioactivity.
    Catauro M; Melisi D; Curcio A; Rimoli MG
    J Biomed Mater Res A; 2008 Dec; 87(4):843-9. PubMed ID: 18200553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties.
    Lin WC; Yu DG; Yang MC
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):143-51. PubMed ID: 16054345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 7. Effect of biological factors on indomethacin release from the cement loaded on bovine bone.
    Otsuka M; Nakahigashi Y; Matsuda Y; Fox JL; Higuchi WI
    J Pharm Sci; 1994 Nov; 83(11):1569-73. PubMed ID: 7891276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation and ectopic osteoinduction study of macroporous bone substitute with calcium phosphate cements and rhBMP-2 loaded gelatin microspheres].
    Li M; Liu XD; Liu XY; Ge BF
    Zhongguo Gu Shang; 2011 May; 24(5):411-5. PubMed ID: 21688541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and properties of calcium phosphate cements incorporated gelatin microspheres and calcium sulfate dihydrate as controlled local drug delivery system.
    Cai S; Zhai Y; Xu G; Lu S; Zhou W; Ye X
    J Mater Sci Mater Med; 2011 Nov; 22(11):2487-96. PubMed ID: 21894539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphate cements as drug delivery materials.
    Ginebra MP; Canal C; Espanol M; Pastorino D; Montufar EB
    Adv Drug Deliv Rev; 2012 Sep; 64(12):1090-110. PubMed ID: 22310160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.