These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 21123284)
21. Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration. Bradshaw M; Ho D; Fear MW; Gelain F; Wood FM; Iyer KS Sci Rep; 2014 Nov; 4():6903. PubMed ID: 25384420 [TBL] [Abstract][Full Text] [Related]
22. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering. Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638 [TBL] [Abstract][Full Text] [Related]
23. Tunable mechanics of peptide nanofiber gels. Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454 [TBL] [Abstract][Full Text] [Related]
24. Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels. Pakstis LM; Ozbas B; Hales KD; Nowak AP; Deming TJ; Pochan D Biomacromolecules; 2004; 5(2):312-8. PubMed ID: 15002989 [TBL] [Abstract][Full Text] [Related]
25. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells. Wang YL; Lin SP; Nelli SR; Zhan FK; Cheng H; Lai TS; Yeh MY; Lin HC; Hung SC Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27792283 [TBL] [Abstract][Full Text] [Related]
26. A self-assembling β-peptide hydrogel for neural tissue engineering. Motamed S; Del Borgo MP; Kulkarni K; Habila N; Zhou K; Perlmutter P; Forsythe JS; Aguilar MI Soft Matter; 2016 Feb; 12(8):2243-6. PubMed ID: 26853859 [TBL] [Abstract][Full Text] [Related]
28. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering. Chen Y; Bilgen B; Pareta RA; Myles AJ; Fenniri H; Ciombor DM; Aaron RK; Webster TJ Tissue Eng Part C Methods; 2010 Dec; 16(6):1233-43. PubMed ID: 20184414 [TBL] [Abstract][Full Text] [Related]
29. Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons. Zou Z; Zheng Q; Wu Y; Guo X; Yang S; Li J; Pan H J Biomed Mater Res A; 2010 Dec; 95(4):1125-31. PubMed ID: 20878982 [TBL] [Abstract][Full Text] [Related]
30. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery. Wang H; Yang Z Nanoscale; 2012 Sep; 4(17):5259-67. PubMed ID: 22814874 [TBL] [Abstract][Full Text] [Related]
31. Designer D-form self-assembling peptide nanofiber scaffolds for 3-dimensional cell cultures. Luo Z; Yue Y; Zhang Y; Yuan X; Gong J; Wang L; He B; Liu Z; Sun Y; Liu J; Hu M; Zheng J Biomaterials; 2013 Jul; 34(21):4902-13. PubMed ID: 23602368 [TBL] [Abstract][Full Text] [Related]
32. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. Park J; Lim E; Back S; Na H; Park Y; Sun K J Biomed Mater Res A; 2010 Jun; 93(3):1091-9. PubMed ID: 19768787 [TBL] [Abstract][Full Text] [Related]
33. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. Koutsopoulos S J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893 [TBL] [Abstract][Full Text] [Related]
34. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design. Kato R; Kaga C; Kunimatsu M; Kobayashi T; Honda H J Biosci Bioeng; 2006 Jun; 101(6):485-95. PubMed ID: 16935250 [TBL] [Abstract][Full Text] [Related]
35. Differentiation of bone marrow stromal cells into osteoblasts in a self-assembling peptide hydrogel: in vitro and in vivo studies. Ozeki M; Kuroda S; Kon K; Kasugai S J Biomater Appl; 2011 Mar; 25(7):663-84. PubMed ID: 20089608 [TBL] [Abstract][Full Text] [Related]
36. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. Gelain F; Unsworth LD; Zhang S J Control Release; 2010 Aug; 145(3):231-9. PubMed ID: 20447427 [TBL] [Abstract][Full Text] [Related]
37. Novel phosphorescent hydrogels based on an Ir(III) metal complex. Li Z; Wei Z; Xu F; Li YH; Lu TJ; Chen YM; Zhou GJ Macromol Rapid Commun; 2012 Jul; 33(14):1191-6. PubMed ID: 22614946 [TBL] [Abstract][Full Text] [Related]
38. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Loo Y; Zhang S; Hauser CA Biotechnol Adv; 2012; 30(3):593-603. PubMed ID: 22041166 [TBL] [Abstract][Full Text] [Related]
39. Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Jacob RS; Ghosh D; Singh PK; Basu SK; Jha NN; Das S; Sukul PK; Patil S; Sathaye S; Kumar A; Chowdhury A; Malik S; Sen S; Maji SK Biomaterials; 2015 Jun; 54():97-105. PubMed ID: 25907043 [TBL] [Abstract][Full Text] [Related]
40. Osteoblastic differentiation on hydrogels fabricated from Ca Tsutsumi H; Kawamura M; Mihara H Bioorg Med Chem; 2018 Jul; 26(12):3126-3132. PubMed ID: 29699909 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]