BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 21123372)

  • 1. Insertion of microRNA targets into the flavivirus genome alters its highly neurovirulent phenotype.
    Heiss BL; Maximova OA; Pletnev AG
    J Virol; 2011 Feb; 85(4):1464-72. PubMed ID: 21123372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tick-borne Langat/mosquito-borne dengue flavivirus chimera, a candidate live attenuated vaccine for protection against disease caused by members of the tick-borne encephalitis virus complex: evaluation in rhesus monkeys and in mosquitoes.
    Pletnev AG; Bray M; Hanley KA; Speicher J; Elkins R
    J Virol; 2001 Sep; 75(17):8259-67. PubMed ID: 11483771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-based control of tick-borne flavivirus neuropathogenesis: Challenges and perspectives.
    Teterina NL; Maximova OA; Kenney H; Liu G; Pletnev AG
    Antiviral Res; 2016 Mar; 127():57-67. PubMed ID: 26794396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable and Highly Immunogenic MicroRNA-Targeted Single-Dose Live Attenuated Vaccine Candidate against Tick-Borne Encephalitis Constructed Using Genetic Backbone of Langat Virus.
    Tsetsarkin KA; Maximova OA; Liu G; Kenney H; Teterina NL; Pletnev AG
    mBio; 2019 Apr; 10(2):. PubMed ID: 31015334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the Langat/dengue 4 chimeric virus as a live attenuated tick-borne encephalitis vaccine for safety and immunogenicity in healthy adult volunteers.
    Wright PF; Ankrah S; Henderson SE; Durbin AP; Speicher J; Whitehead SS; Murphy BR; Pletnev AG
    Vaccine; 2008 Feb; 26(7):882-90. PubMed ID: 18207289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4.
    Pletnev AG; Men R
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1746-51. PubMed ID: 9465088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis.
    Lai CJ; Monath TP
    Adv Virus Res; 2003; 61():469-509. PubMed ID: 14714441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice.
    Pletnev AG; Bray M; Lai CJ
    J Virol; 1993 Aug; 67(8):4956-63. PubMed ID: 8331735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses.
    Pletnev AG; Bray M; Huggins J; Lai CJ
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10532-6. PubMed ID: 1438242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice.
    Rumyantsev AA; Murphy BR; Pletnev AG
    J Virol; 2006 Feb; 80(3):1427-39. PubMed ID: 16415020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection.
    Lindqvist R; Rosendal E; Weber E; Asghar N; Schreier S; Lenman A; Johansson M; Dobler G; Bestehorn M; Kröger A; Överby AK
    J Neuroinflammation; 2020 Sep; 17(1):284. PubMed ID: 32988388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA targeting of neurotropic flavivirus: effective control of virus escape and reversion to neurovirulent phenotype.
    Heiss BL; Maximova OA; Thach DC; Speicher JM; Pletnev AG
    J Virol; 2012 May; 86(10):5647-59. PubMed ID: 22419812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome.
    Engel AR; Rumyantsev AA; Maximova OA; Speicher JM; Heiss B; Murphy BR; Pletnev AG
    Virology; 2010 Sep; 405(1):243-52. PubMed ID: 20594569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Internal Ribosome Entry Site/MicroRNA-Based Approach for Flavivirus Attenuation and Live Vaccine Development.
    Tsetsarkin KA; Liu G; Volkova E; Pletnev AG
    mBio; 2017 Apr; 8(2):. PubMed ID: 28420742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety evaluation of chimeric Langat/Dengue 4 flavivirus, a live vaccine candidate against tick-borne encephalitis.
    Pripuzova NS; Tereshkina NV; Gmyl LV; Dzhivanyan TI; Rumyantsev AA; Romanova LIu; Mustafina AN; Lashkevich VA; Karganova GG
    J Med Virol; 2009 Oct; 81(10):1777-85. PubMed ID: 19697399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of live and inactivated tick-borne encephalitis virus vaccines for safety, immunogenicity and efficacy in rhesus monkeys.
    Rumyantsev AA; Chanock RM; Murphy BR; Pletnev AG
    Vaccine; 2006 Jan; 24(2):133-43. PubMed ID: 16115704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric Langat/Dengue viruses protect mice from heterologous challenge with the highly virulent strains of tick-borne encephalitis virus.
    Pletnev AG; Karganova GG; Dzhivanyan TI; Lashkevich VA; Bray M
    Virology; 2000 Aug; 274(1):26-31. PubMed ID: 10936085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus.
    Aberle JH; Aberle SW; Kofler RM; Mandl CW
    J Virol; 2005 Dec; 79(24):15107-13. PubMed ID: 16306582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice.
    Ershova AS; Gra OA; Lyaschuk AM; Grunina TM; Tkachuk AP; Bartov MS; Savina DM; Sergienko OV; Galushkina ZM; Gudov VP; Kozlovskaya LI; Kholodilov IS; Gmyl LV; Karganova GG; Lunin VG; Karyagina AS; Gintsburg AL
    BMC Infect Dis; 2016 Oct; 16(1):544. PubMed ID: 27717318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kissing-loop interaction between 5' and 3' ends of tick-borne Langat virus genome 'bridges the gap' between mosquito- and tick-borne flaviviruses in mechanisms of viral RNA cyclization: applications for virus attenuation and vaccine development.
    Tsetsarkin KA; Liu G; Shen K; Pletnev AG
    Nucleic Acids Res; 2016 Apr; 44(7):3330-50. PubMed ID: 26850640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.