BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21123907)

  • 1. Photoelectrochemical degradation of methyl orange by TiO(2) nanopore arrays electrode and its comparison with TiO(2) nanotube arrays electrode.
    Liu Y; Gan X; Zhou B; Li J; Zhang J; Chen Y; Bai J; Zheng Q; Liu B; Cai W
    Water Sci Technol; 2010; 62(12):2783-9. PubMed ID: 21123907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode.
    Liu Y; Gan X; Zhou B; Xiong B; Li J; Dong C; Bai J; Cai W
    J Hazard Mater; 2009 Nov; 171(1-3):678-83. PubMed ID: 19577843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays.
    Liao J; Lin S; Zhang L; Pan N; Cao X; Li J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):171-7. PubMed ID: 22117568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays.
    Xu Z; Yu J
    Nanoscale; 2011 Aug; 3(8):3138-44. PubMed ID: 21674119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Liang L; Cheng Y; Shi G; Jin L
    J Hazard Mater; 2008 Oct; 158(2-3):517-22. PubMed ID: 18440136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bifunctionalized dye-sensitized TiO(2) film for efficient degradation of methyl orange under visible light irradiation.
    Wu Q; Zhao J; Qin G; Wang X; Tong X; Xue S
    Water Sci Technol; 2012; 66(4):843-9. PubMed ID: 22766876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode.
    Hou Y; Qu J; Zhao X; Lei P; Wan D; Huang CP
    Sci Total Environ; 2009 Mar; 407(7):2431-9. PubMed ID: 19171372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Shi G; Fang Y; Liang L; Ding H; Jin L
    Environ Sci Technol; 2007 Sep; 41(17):6259-63. PubMed ID: 17937312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically assisted photocatalytic degradation of Acid Orange 7 with beta-PbO2 electrodes modified by TiO2.
    Li G; Qu J; Zhang X; Ge J
    Water Res; 2006 Jan; 40(2):213-20. PubMed ID: 16384594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An innovative Ti/Tio2 mesh photoelectrode for methyl orange photoelectrocatalytic degradation.
    Li FB; Li XZ; Kang YH; Li XJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(4):623-40. PubMed ID: 12046661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation.
    Zhao K; Zhao G; Li P; Gao J; Lv B; Li D
    Chemosphere; 2010 Jun; 80(4):410-5. PubMed ID: 20434754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell.
    Du Y; Feng Y; Qu Y; Liu J; Ren N; Liu H
    Environ Sci Technol; 2014 Jul; 48(13):7634-41. PubMed ID: 24863439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange.
    Yun DM; Cho HH; Jang JW; Park JW
    Water Res; 2013 Apr; 47(5):1858-66. PubMed ID: 23375600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of methyl orange dye wastewater by cooperative electrochemical oxidation in anodic-cathodic compartment.
    Pang L; Wang H; Bian ZY
    Water Sci Technol; 2013; 67(3):521-6. PubMed ID: 23202555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of TiO(2) nanotube array dimension and annealing temperature on the Acid Red 4 degradation in aqueous solution by photocatalytic process.
    Ku Y; Fan ZR; Chou YC; Wang WY
    Water Sci Technol; 2010; 61(11):2943-9. PubMed ID: 20489268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical performance of multi-layered BiOx-TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water.
    Park H; Bak A; Ahn YY; Choi J; Hoffmannn MR
    J Hazard Mater; 2012 Apr; 211-212():47-54. PubMed ID: 21676541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac.
    Hu X; Yang J; Zhang J
    J Hazard Mater; 2011 Nov; 196():220-7. PubMed ID: 21945685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation.
    Zhai C; Zhu M; Ren F; Yao Z; Du Y; Yang P
    J Hazard Mater; 2013 Dec; 263 Pt 2():291-8. PubMed ID: 24091125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu2O loaded titanate nanotube arrays for simultaneously photoelectrochemical ibuprofen oxidation and hydrogen generation.
    Chang KL; Sun Q; Peng YP; Lai SW; Sung M; Huang CY; Kuo HW; Sun J; Lin YC
    Chemosphere; 2016 May; 150():605-614. PubMed ID: 26899855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties.
    Song P; Zhang X; Sun M; Cui X; Lin Y
    Nanoscale; 2012 Mar; 4(5):1800-4. PubMed ID: 22297577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.