These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2112403)

  • 1. Respiratory responses of domestic fowl to hyperthermia following selective air sac occlusions.
    Brackenbury JH; Amaku JA
    Exp Physiol; 1990 May; 75(3):391-400. PubMed ID: 2112403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventilation, gaseous exchange and air sac gases during moderate thermal panting in domestic fowl.
    Gleeson M; Brackenbury JH
    Q J Exp Physiol; 1983 Oct; 68(4):591-602. PubMed ID: 6417720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas exchange in air sacs: contribution to respiratory gas exchange in ducks.
    Magnussen H; Willmer H; Scheid P
    Respir Physiol; 1976 Feb; 26(1):129-46. PubMed ID: 1273386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy of the lower respiratory tract in domestic birds, with emphasis on respiration.
    Casteleyn C; Cornillie P; Van Cruchten S; Van den Broeck W; Van Ginneken C; Simoens P
    Anat Histol Embryol; 2018 Apr; 47(2):89-99. PubMed ID: 29250822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of carbon dioxide in penguin air sacs.
    Powell FL; Hempleman SC
    Am J Physiol; 1985 Jun; 248(6 Pt 2):R748-52. PubMed ID: 3923844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of partial pressure of carbon dioxide in expired gas and arterial blood at three different ventilation states in apneic chickens (Gallus domesticus) during air sac insufflation anesthesia.
    Paré M; Ludders JW; Erb HN
    Vet Anaesth Analg; 2013 May; 40(3):245-56. PubMed ID: 23331534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation.
    Piiper J; Drees F; Scheid P
    Respir Physiol; 1970 May; 9(2):234-45. PubMed ID: 5445185
    [No Abstract]   [Full Text] [Related]  

  • 8. Pathway of respired gas in the air sacs-lung apparatus of fowl and ducks.
    Bouverot P; Dejours P
    Respir Physiol; 1971 Dec; 13(3):330-42. PubMed ID: 5158851
    [No Abstract]   [Full Text] [Related]  

  • 9. Ventilation patterns of the songbird lung/air sac system during different behaviors.
    Mackelprang R; Goller F
    J Exp Biol; 2013 Oct; 216(Pt 19):3611-9. PubMed ID: 23788706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrapressures and oxygen contents of air sacs at deformation of expiratory-oxygen-concentration curve in chickens.
    Itabisashi T
    Natl Inst Anim Health Q (Tokyo); 1982; 22(2):76-87. PubMed ID: 7133152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood gases and respiratory pattern in exercising fowl: comparison in normoxic and hypoxic conditions.
    Brackenbury JH
    J Exp Biol; 1986 Nov; 126():423-31. PubMed ID: 3100714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon monoxide diffusing capacity of the respiratory system in the domestic fowl.
    Piiper J; Pfeifer K; Scheid P
    Respir Physiol; 1969 Apr; 6(3):309-17. PubMed ID: 5778477
    [No Abstract]   [Full Text] [Related]  

  • 13. Airflow dynamics in the avian lung as determined by direct and indirect methods.
    Brackenbury JH
    Respir Physiol; 1971 Dec; 13(3):319-29. PubMed ID: 5158850
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of altering dead space volume on respiration and air sac gases in geese.
    Fedde MR; Burger RE; Geiser J; Gratz RK; Estavillo JA; Scheid P
    Respir Physiol; 1986 Nov; 66(2):109-22. PubMed ID: 3101153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventilatory pressure loading at constant pulmonary FCO2 in Gallus domesticus.
    Ballam GO; Clanton TL; Kunz AL
    Respir Physiol; 1984 Nov; 58(2):197-206. PubMed ID: 6441217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina.
    Sereno PC; Martinez RN; Wilson JA; Varricchio DJ; Alcober OA; Larsson HC
    PLoS One; 2008 Sep; 3(9):e3303. PubMed ID: 18825273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of ventilation in running birds: effects of hypoxia, hyperoxia, and CO2.
    Brackenbury JH; Gleeson M; Avery P
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1397-1404. PubMed ID: 6818211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.
    Plummer EM; Goller F
    J Exp Biol; 2008 Jan; 211(Pt 1):66-78. PubMed ID: 18083734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise hyperpnea in birds: evidence against a primary role for pCO2.
    Brackenbury JH; Gleeson M
    Comp Biochem Physiol A Comp Physiol; 1986; 83(2):337-9. PubMed ID: 2869875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the air sac thickness on ventilation by a 1D model of an avian respiratory system.
    Urushikubo A; Nakamura M; Hirahara H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():461-4. PubMed ID: 24109723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.