BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2112408)

  • 1. Evidence for allosteric coupling between the ribosome and repressor binding sites of a translationally regulated mRNA.
    Tang CK; Draper DE
    Biochemistry; 1990 May; 29(18):4434-9. PubMed ID: 2112408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational repression of the Escherichia coli alpha operon mRNA: importance of an mRNA conformational switch and a ternary entrapment complex.
    Schlax PJ; Xavier KA; Gluick TC; Draper DE
    J Biol Chem; 2001 Oct; 276(42):38494-501. PubMed ID: 11504736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric mechanism for translational repression in the Escherichia coli alpha operon.
    Spedding G; Draper DE
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4399-403. PubMed ID: 7685102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor.
    Tang CK; Draper DE
    Cell; 1989 May; 57(4):531-6. PubMed ID: 2470510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilised secondary structure at a ribosomal binding site enhances translational repression in E. coli.
    Brunel C; Romby P; Sacerdot C; de Smit M; Graffe M; Dondon J; van Duin J; Ehresmann B; Ehresmann C; Springer M
    J Mol Biol; 1995 Oct; 253(2):277-90. PubMed ID: 7563089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S4-alpha mRNA translation regulation complex. II. Secondary structures of the RNA regulatory site in the presence and absence of S4.
    Deckman IC; Draper DE
    J Mol Biol; 1987 Jul; 196(2):323-32. PubMed ID: 2443720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational feedback regulation of the gene for L35 in Escherichia coli requires binding of ribosomal protein L20 to two sites in its leader mRNA: a possible case of ribosomal RNA-messenger RNA molecular mimicry.
    Guillier M; Allemand F; Raibaud S; Dardel F; Springer M; Chiaruttini C
    RNA; 2002 Jul; 8(7):878-89. PubMed ID: 12166643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7.
    Saito K; Nomura M
    J Mol Biol; 1994 Jan; 235(1):125-39. PubMed ID: 8289236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome initiation complex formation with the pseudoknotted alpha operon messenger RNA.
    Spedding G; Gluick TC; Draper DE
    J Mol Biol; 1993 Feb; 229(3):609-22. PubMed ID: 7679446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A competition mechanism regulates the translation of the Escherichia coli operon encoding ribosomal proteins L35 and L20.
    Haentjens-Sitri J; Allemand F; Springer M; Chiaruttini C
    J Mol Biol; 2008 Jan; 375(3):612-25. PubMed ID: 18037435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of alpha operon gene expression in Escherichia coli. A novel form of translational coupling.
    Thomas MS; Bedwell DM; Nomura M
    J Mol Biol; 1987 Jul; 196(2):333-45. PubMed ID: 3309351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the pseudoknot structure of the S15 translational operator from Escherichia coli.
    Bénard L; Philippe C; Dondon L; Grunberg-Manago M; Ehresmann B; Ehresmann C; Portier C
    Mol Microbiol; 1994 Oct; 14(1):31-40. PubMed ID: 7830558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S4-alpha mRNA translation repression complex. I. Thermodynamics of formation.
    Deckman IC; Draper DE; Thomas MS
    J Mol Biol; 1987 Jul; 196(2):313-22. PubMed ID: 2443719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific interaction between ribosomal protein S4 and the alpha operon messenger RNA.
    Deckman IC; Draper DE
    Biochemistry; 1985 Dec; 24(27):7860-5. PubMed ID: 3912010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the half-life of ribosomal protein messenger RNA caused by translational repression.
    Cole JR; Nomura M
    J Mol Biol; 1986 Apr; 188(3):383-92. PubMed ID: 2426454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational regulation of the L11 ribosomal protein operon of Escherichia coli: mutations that define the target site for repression by L1.
    Thomas MS; Nomura M
    Nucleic Acids Res; 1987 Apr; 15(7):3085-96. PubMed ID: 3104883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational regulation of the L11 ribosomal protein operon of Escherichia coli: analysis of the mRNA target site using oligonucleotide-directed mutagenesis.
    Baughman G; Nomura M
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5389-93. PubMed ID: 6382263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an intragenic ribosome binding site that affects expression of the uncB gene of the Escherichia coli proton-translocating ATPase (unc) operon.
    Matten SR; Schneider TD; Ringquist S; Brusilow WS
    J Bacteriol; 1998 Aug; 180(15):3940-5. PubMed ID: 9683492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural elements of rps0 mRNA involved in the modulation of translational initiation and regulation of E. coli ribosomal protein S15.
    Philippe C; Bénard L; Eyermann F; Cachia C; Kirillov SV; Portier C; Ehresmann B; Ehresmann C
    Nucleic Acids Res; 1994 Jul; 22(13):2538-46. PubMed ID: 8041615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.