These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21124468)

  • 61. Cinchona-based squaramide-catalysed cascade aza-Michael-Michael addition: enantioselective construction of functionalized spirooxindole tetrahydroquinolines.
    Yang W; Du DM
    Chem Commun (Camb); 2013 Oct; 49(78):8842-4. PubMed ID: 23959265
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Natural products with maleic anhydride structure: nonadrides, tautomycin, chaetomellic anhydride, and other compounds.
    Chen X; Zheng Y; Shen Y
    Chem Rev; 2007 May; 107(5):1777-830. PubMed ID: 17439289
    [No Abstract]   [Full Text] [Related]  

  • 63. Total synthesis of ascospiroketal a through a Ag(I) -promoted cyclization cascade.
    Chang S; Hur S; Britton R
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):211-4. PubMed ID: 25377217
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Catalytic enantioselective Henry reactions of isatins: application in the concise synthesis of (S)-(-)-spirobrassinin.
    Liu L; Zhang S; Xue F; Lou G; Zhang H; Ma S; Duan W; Wang W
    Chemistry; 2011 Jul; 17(28):7791-5. PubMed ID: 21626595
    [No Abstract]   [Full Text] [Related]  

  • 65. Spirolactones: Recent Advances in Natural Products, Bioactive Compounds and Synthetic Strategies.
    Quintavalla A
    Curr Med Chem; 2018; 25(8):917-962. PubMed ID: 29110593
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Total synthesis of cyclo-mumbaistatin analogues through anionic homo-Fries rearrangement.
    Neufeind S; Hülsken N; Neudörfl JM; Schlörer N; Schmalz HG
    Chemistry; 2011 Feb; 17(9):2633-41. PubMed ID: 21274958
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Total synthesis of (+/-)-halichlorine, (+/-)-pinnaic acid, and (+/-)-tauropinnaic acid.
    Christie HS; Heathcock CH
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12079-84. PubMed ID: 15299146
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis of four novel natural product inspired scaffolds for drug discovery.
    Jenkins ID; Lacrampe F; Ripper J; Alcaraz L; Le PV; Nikolakopoulos G; de Almeida Leone P; White RH; Quinn RJ
    J Org Chem; 2009 Feb; 74(3):1304-13. PubMed ID: 19105637
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthetic and biological studies on the spiro-mamakone system.
    Murphy AC; Devenish SR; Muscroft-Taylor AC; Blunt JW; Munro MH
    Org Biomol Chem; 2008 Oct; 6(20):3854-62. PubMed ID: 18843418
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recent Developments in Total Syntheses of Cephalosporolides, Penisporolides, and Ascospiroketals.
    Yao H; Wang J; Tong R
    Chem Rec; 2017 Nov; 17(11):1109-1123. PubMed ID: 28272766
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The chemistry and biology of organic guanidine derivatives.
    Berlinck RG; Burtoloso AC; Trindade-Silva AE; Romminger S; Morais RP; Bandeira K; Mizuno CM
    Nat Prod Rep; 2010 Jan; 27(12):1871-907. PubMed ID: 20957265
    [No Abstract]   [Full Text] [Related]  

  • 72. Recent progress in the isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals.
    Zhang FM; Zhang SY; Tu YQ
    Nat Prod Rep; 2018 Jan; 35(1):75-104. PubMed ID: 29354841
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synthesis of the 2-formylpyrrole spiroketal pollenopyrroside A and structural elucidation of xylapyrroside A, shensongine A and capparisine B.
    Wood JM; Furkert DP; Brimble MA
    Org Biomol Chem; 2016 Aug; 14(32):7659-64. PubMed ID: 27452965
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Unified route to the palmarumycin and preussomerin natural products. Enantioselective synthesis of (-)-preussomerin G.
    Barrett AG; Blaney F; Campbell AD; Hamprecht D; Meyer T; White AJ; Witty D; Williams DJ
    J Org Chem; 2002 May; 67(9):2735-50. PubMed ID: 11975523
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Charting Biologically Relevant Spirocyclic Compound Space.
    Müller G; Berkenbosch T; Benningshof JC; Stumpfe D; Bajorath J
    Chemistry; 2017 Jan; 23(3):703-710. PubMed ID: 27859909
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis of immunomodulatory marine natural products.
    Danishefsky SJ; Inoue M; Trauner D
    Ernst Schering Res Found Workshop; 2000; (32):1-24. PubMed ID: 11077604
    [No Abstract]   [Full Text] [Related]  

  • 77. Structural revision of cephalosporolide J and bassianolone.
    Song L; Lee KH; Lin Z; Tong R
    J Org Chem; 2014 Feb; 79(3):1493-7. PubMed ID: 24417265
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Unified, radical-based approach for the synthesis of spiroketals.
    de Greef M; Zard SZ
    Org Lett; 2007 Apr; 9(9):1773-6. PubMed ID: 17391041
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stereocontrol of 5,5-spiroketals in the synthesis of cephalosporolide H epimers.
    Tlais SF; Dudley GB
    Org Lett; 2010 Oct; 12(20):4698-701. PubMed ID: 20860404
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Diversity-oriented synthesis of polyketide natural products via iterative chemo- and stereoselective functionalization of polyenoates: development of a unified approach for the C(1-19) segments of lituarines A-C.
    Smith AB; Walsh SP; Frohn M; Duffey MO
    Org Lett; 2005 Jan; 7(1):139-42. PubMed ID: 15624997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.