These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 21124546)
1. Saturated Förster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging. Deng S; Chen J; Huang Q; Fan C; Cheng Y Opt Lett; 2010 Dec; 35(23):3862-4. PubMed ID: 21124546 [TBL] [Abstract][Full Text] [Related]
3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
4. Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo. Wessels JT; Yamauchi K; Hoffman RM; Wouters FS Cytometry A; 2010 Jul; 77(7):667-76. PubMed ID: 20564541 [TBL] [Abstract][Full Text] [Related]
5. Extensive use of FRET in biological imaging. Arai Y; Nagai T Microscopy (Oxf); 2013 Aug; 62(4):419-28. PubMed ID: 23797967 [TBL] [Abstract][Full Text] [Related]
6. A dual-emission Förster resonance energy transfer nanoprobe for sensing/imaging pH changes in the biological environment. Chiu YL; Chen SA; Chen JH; Chen KJ; Chen HL; Sung HW ACS Nano; 2010 Dec; 4(12):7467-74. PubMed ID: 21082810 [TBL] [Abstract][Full Text] [Related]
7. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence. Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396 [TBL] [Abstract][Full Text] [Related]
8. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers. Melnikov SM; Yeow EK; Uji-i H; Cotlet M; Müllen K; De Schryver FC; Enderlein J; Hofkens J J Phys Chem B; 2007 Feb; 111(4):708-19. PubMed ID: 17249814 [TBL] [Abstract][Full Text] [Related]
9. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
11. Effects of donor and acceptor's fluorescence lifetimes on the method of applying Förster resonance energy transfer in STED microscopy. Deng S; Chen J; Gao Z; Fan C; Yan Q; Wang Y J Microsc; 2018 Jan; 269(1):59-65. PubMed ID: 28758683 [TBL] [Abstract][Full Text] [Related]
12. An in vivo spectral multiplexing approach for the cooperative imaging of different disease-related biomarkers with near-infrared fluorescent forster resonance energy transfer probes. Busch C; Schröter T; Grabolle M; Wenzel M; Kempe H; Kaiser WA; Resch-Genger U; Hilger I J Nucl Med; 2012 Apr; 53(4):638-46. PubMed ID: 22407968 [TBL] [Abstract][Full Text] [Related]
13. FRET microscopy in the living cell: different approaches, strengths and weaknesses. Padilla-Parra S; Tramier M Bioessays; 2012 May; 34(5):369-76. PubMed ID: 22415767 [TBL] [Abstract][Full Text] [Related]
14. Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion. Kuang C; Zhao W; Wang G Rev Sci Instrum; 2010 May; 81(5):053709. PubMed ID: 20515147 [TBL] [Abstract][Full Text] [Related]
15. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments. Casanova D; Giaume D; Gacoin T; Boilot JP; Alexandrou A J Phys Chem B; 2006 Oct; 110(39):19264-70. PubMed ID: 17004778 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
19. Intramolecular directional förster resonance energy transfer at the single-molecule level in a dendritic system. Cotlet M; Gronheid R; Habuchi S; Stefan A; Barbafina A; Müllen K; Hofkens J; De Schryver FC J Am Chem Soc; 2003 Nov; 125(44):13609-17. PubMed ID: 14583059 [TBL] [Abstract][Full Text] [Related]
20. Objective-type total internal reflection microscopy (emission) for single-molecule FRET. Joo C; Ha T Cold Spring Harb Protoc; 2012 Nov; 2012(11):1192-4. PubMed ID: 23118359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]