These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2112461)

  • 21. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies.
    Eftink MR; Ghiron CA
    Biochemistry; 1976 Feb; 15(3):672-80. PubMed ID: 1252418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II.
    Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG
    Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of tubulin with phospholipid vesicles. II. Physical changes of the protein.
    Kumar N; Klausner RD; Weinstein JN; Blumenthal R; Flavin M
    J Biol Chem; 1981 Jun; 256(11):5886-9. PubMed ID: 6894594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. VI. Quenching by acrylamide of the intrinsic tryptophan fluorescence of cryoglobulin and non-cryoglobulin IgM proteins.
    Middaugh CR; Litman GW
    Biochim Biophys Acta; 1978 Jul; 535(1):33-43. PubMed ID: 667117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan fluorescence of human phenylalanine hydroxylase produced in Escherichia coli.
    Knappskog PM; Haavik J
    Biochemistry; 1995 Sep; 34(37):11790-9. PubMed ID: 7547912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative steady-state fluorescence studies of cytosolic rat liver (GTP), Saccharomyces cerevisiae (ATP) and Escherichia coli (ATP) phospho enol pyruvate carboxykinases.
    Encinas MV; Rojas MC; Goldie H; Cardemil E
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):195-202. PubMed ID: 8448184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrity of refolded and reoxidized gelatin-binding fragments of fibronectin.
    Ingham KC; Brew SA
    Proteins; 1992 Feb; 12(2):180-7. PubMed ID: 1603807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on the location of aromatic amino acids in alpha-crystallin.
    Augusteyn RC; Ghiggino KP; Putilina T
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):61-71. PubMed ID: 8448196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local conformation of rabbit skeletal myosin rod filaments probed by intrinsic tryptophan fluorescence.
    Chang YC; Ludescher RD
    Biochemistry; 1994 Mar; 33(8):2313-21. PubMed ID: 8117688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence quenching studies of bovine growth hormone in several conformational states.
    Havel HA; Kauffman EW; Elzinga PA
    Biochim Biophys Acta; 1988 Jul; 955(2):154-63. PubMed ID: 3395621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of micelle diameter on tryptophan dynamics in an amphipathic helical peptide in phosphatidylcholine.
    McLean LR; Krstenansky JL; Owen TJ; Eftink MR; Hagaman KA
    Biochemistry; 1989 Oct; 28(21):8403-10. PubMed ID: 2605192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophan exposure in various conformational isomers of bovine prothrombin fragment 1. An acrylamide quenching study.
    Marsh HC; George EM; Koehler KA; Hiskey RG
    Biochim Biophys Acta; 1981 Jan; 667(1):35-43. PubMed ID: 6894253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible unfolding of the gelatin-binding domain of fibronectin: structural stability in relation to function.
    Isaacs BS; Brew SA; Ingham KC
    Biochemistry; 1989 Jan; 28(2):842-50. PubMed ID: 2713351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid sequence of HSP-1, a major protein of stallion seminal plasma: effect of glycosylation on its heparin- and gelatin-binding capabilities.
    Calvete JJ; Mann K; Schäfer W; Sanz L; Reinert M; Nessau S; Raida M; Töpfer-Petersen E
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):615-22. PubMed ID: 7654203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic fluorescence of the P-glycoprotein multidrug transporter: sensitivity of tryptophan residues to binding of drugs and nucleotides.
    Liu R; Siemiarczuk A; Sharom FJ
    Biochemistry; 2000 Dec; 39(48):14927-38. PubMed ID: 11101309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cofactor and DNA interactions in EcoRI DNA methyltransferase. Fluorescence spectroscopy and phenylalanine replacement for tryptophan 183.
    Maegley KA; Gonzalez L; Smith DW; Reich NO
    J Biol Chem; 1992 Sep; 267(26):18527-32. PubMed ID: 1526989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of the quenching of the intrinsic fluorescence of succinyl-CoA synthetase from Escherichia coli by acrylamide, iodide, and coenzyme A.
    Prasad AR; Nishimura JS; Horowitz PM
    Biochemistry; 1983 Aug; 22(18):4272-5. PubMed ID: 6354251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of calcium binding on conformational changes of staphylococcal metalloproteinase measured by means of intrinsic protein fluorescence.
    Wasylewski Z; Stryjewski W; Waśniowska A; Potempa J; Baran K
    Biochim Biophys Acta; 1986 Jun; 871(2):177-81. PubMed ID: 3085713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.