These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21124642)

  • 1. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells.
    Di D; Perez-Wurfl I; Gentle A; Kim DH; Hao X; Shi L; Conibeer G; Green MA
    Nanoscale Res Lett; 2010 Aug; 5(11):1762-1767. PubMed ID: 21124642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon quantum dot/crystalline silicon solar cells.
    Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA
    Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian optimization of hydrogen plasma treatment in silicon quantum dot multilayer and application to solar cells.
    Kumagai F; Gotoh K; Miyamoto S; Kato S; Kutsukake K; Usami N; Kurokawa Y
    Discov Nano; 2023 Mar; 18(1):43. PubMed ID: 37382685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Si solid-state quantum dot-based materials for tandem solar cells.
    Conibeer G; Perez-Wurfl I; Hao X; Di D; Lin D
    Nanoscale Res Lett; 2012 Mar; 7(1):193. PubMed ID: 22436303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells.
    Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ
    Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Niobium-Doped Titanium Oxide Thickness and Thermal Oxide Layer for Silicon Quantum Dot Solar Cells as a Dopant-Blocking Layer.
    Akaishi R; Kitazawa K; Gotoh K; Kato S; Usami N; Kurokawa Y
    Nanoscale Res Lett; 2020 Feb; 15(1):39. PubMed ID: 32040622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers.
    Cao Y; Lu P; Zhang X; Xu J; Xu L; Chen K
    Nanoscale Res Lett; 2014; 9(1):634. PubMed ID: 25489285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage.
    Panthani MG; Stolle CJ; Reid DK; Rhee DJ; Harvey TB; Akhavan VA; Yu Y; Korgel BA
    J Phys Chem Lett; 2013 Jun; 4(12):2030-4. PubMed ID: 26283248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon quantum dot superlattice solar cell structure including silicon nanocrystals in a photogeneration layer.
    Yamada S; Kurokawa Y; Miyajima S; Konagai M
    Nanoscale Res Lett; 2014; 9(1):246. PubMed ID: 24936160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.
    Kumar Dalapati G; Masudy-Panah S; Kumar A; Cheh Tan C; Ru Tan H; Chi D
    Sci Rep; 2015 Dec; 5():17810. PubMed ID: 26632759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Film-thickness-dependent conduction in ordered Si quantum dot arrays.
    Surana K; Lepage H; Lebrun JM; Doisneau B; Bellet D; Vandroux L; Le Carval G; Baudrit M; Thony P; Mur P
    Nanotechnology; 2012 Mar; 23(10):105401. PubMed ID: 22348886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell.
    Hong SH; Kim YS; Lee W; Kim YH; Song JY; Jang JS; Park JH; Choi SH; Kim KJ
    Nanotechnology; 2011 Oct; 22(42):425203. PubMed ID: 21941033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency Si quantum dot heterojunction solar cells using a single SiO
    Kim TG; Kwak GY; Do K; Kim KJ
    Nanotechnology; 2019 Aug; 30(32):325404. PubMed ID: 30952144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells.
    Kourkoutis LF; Hao X; Huang S; Puthen-Veettil B; Conibeer G; Green MA; Perez-Wurfl I
    Nanoscale; 2013 Aug; 5(16):7499-504. PubMed ID: 23832085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications.
    Sarkhoush M; Rasooli Saghai H; Soofi H
    Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the open-circuit voltage in solar cells doped with quantum dots.
    Tayagaki T; Hoshi Y; Usami N
    Sci Rep; 2013 Sep; 3():2703. PubMed ID: 24067805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting.
    Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB
    Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Charge Transportation in Si Quantum Dot-Sensitized Solar Cells Using Vanadium Doped TiO2.
    Seo H; Ichida D; Hashimoto S; Itagaki N; Koga K; Shiratani M; Nam SH; Boo JH
    J Nanosci Nanotechnol; 2016 May; 16(5):4875-9. PubMed ID: 27483838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet responses of a heterojunction Si quantum dot solar cell.
    Lee SH; Kwak GY; Hong S; Kim C; Kim S; Kim A; Kim KJ
    Nanotechnology; 2017 Jan; 28(3):035402. PubMed ID: 27934781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.