BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 21124789)

  • 1. Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease.
    Marshall J; Ashe KM; Bangari D; McEachern K; Chuang WL; Pacheco J; Copeland DP; Desnick RJ; Shayman JA; Scheule RK; Cheng SH
    PLoS One; 2010 Nov; 5(11):e15033. PubMed ID: 21124789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of Enzyme and Substrate Reduction Therapy with a Novel Antagonist of Glucosylceramide Synthase for Fabry Disease.
    Ashe KM; Budman E; Bangari DS; Siegel CS; Nietupski JB; Wang B; Desnick RJ; Scheule RK; Leonard JP; Cheng SH; Marshall J
    Mol Med; 2015 Apr; 21(1):389-99. PubMed ID: 25938659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-administration with the pharmacological chaperone AT1001 increases recombinant human α-galactosidase A tissue uptake and improves substrate reduction in Fabry mice.
    Benjamin ER; Khanna R; Schilling A; Flanagan JJ; Pellegrino LJ; Brignol N; Lun Y; Guillen D; Ranes BE; Frascella M; Soska R; Feng J; Dungan L; Young B; Lockhart DJ; Valenzano KJ
    Mol Ther; 2012 Apr; 20(4):717-26. PubMed ID: 22215019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced glucosylceramide in the mouse model of Fabry disease: correction by successful enzyme replacement therapy.
    Quinta R; Rodrigues D; Assunção M; Macedo MF; Azevedo O; Cunha D; Oliveira P; Sá Miranda MC
    Gene; 2014 Feb; 536(1):97-104. PubMed ID: 24334116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy.
    Marshall J; McEachern KA; Chuang WL; Hutto E; Siegel CS; Shayman JA; Grabowski GA; Scheule RK; Copeland DP; Cheng SH
    J Inherit Metab Dis; 2010 Jun; 33(3):281-9. PubMed ID: 20336375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective clearance of GL-3 in a human iPSC-derived cardiomyocyte model of Fabry disease.
    Itier JM; Ret G; Viale S; Sweet L; Bangari D; Caron A; Le-Gall F; Bénichou B; Leonard J; Deleuze JF; Orsini C
    J Inherit Metab Dis; 2014 Nov; 37(6):1013-22. PubMed ID: 24850378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme replacement therapy for Fabry disease: a systematic review of available evidence.
    Schaefer RM; Tylki-Szymańska A; Hilz MJ
    Drugs; 2009 Nov; 69(16):2179-205. PubMed ID: 19852524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic mRNA Therapy for the Treatment of Fabry Disease: Preclinical Studies in Wild-Type Mice, Fabry Mouse Model, and Wild-Type Non-human Primates.
    Zhu X; Yin L; Theisen M; Zhuo J; Siddiqui S; Levy B; Presnyak V; Frassetto A; Milton J; Salerno T; Benenato KE; Milano J; Lynn A; Sabnis S; Burke K; Besin G; Lukacs CM; Guey LT; Finn PF; Martini PGV
    Am J Hum Genet; 2019 Apr; 104(4):625-637. PubMed ID: 30879639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer.
    Ziegler RJ; Yew NS; Li C; Cherry M; Berthelette P; Romanczuk H; Ioannou YA; Zeidner KM; Desnick RJ; Cheng SH
    Hum Gene Ther; 1999 Jul; 10(10):1667-82. PubMed ID: 10428212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer.
    Choi JO; Lee MH; Park HY; Jung SC
    J Biomed Sci; 2010 Apr; 17(1):26. PubMed ID: 20398385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial correction of the alpha-galactosidase A deficiency and reduction of glycolipid storage in Fabry mice using synthetic vectors.
    Przybylska M; Wu IH; Zhao H; Ziegler RJ; Tousignant JD; Desnick RJ; Scheule RK; Cheng SH; Yew NS
    J Gene Med; 2004 Jan; 6(1):85-92. PubMed ID: 14716680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in cleavage of globotriaosylceramide and its derivatives accumulated in organs of young Fabry mice following enzyme replacement therapy.
    Kodama T; Tsukimura T; Kawashima I; Sato A; Sakuraba H; Togawa T
    Mol Genet Metab; 2017; 120(1-2):116-120. PubMed ID: 27756537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diurnal Variation of Urinary Fabry Disease Biomarkers during Enzyme Replacement Therapy Cycles.
    Boutin M; Lavoie P; Menkovic I; Toupin A; Abaoui M; Elidrissi-Elawad M; Arthus MF; Fortier C; Ménard C; Maranda B; Bichet DG; Auray-Blais C
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32854306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosphingolipid depletion in fabry disease lymphoblasts with potent inhibitors of glucosylceramide synthase.
    Abe A; Arend LJ; Lee L; Lingwood C; Brady RO; Shayman JA
    Kidney Int; 2000 Feb; 57(2):446-54. PubMed ID: 10652021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-BlyS antibody reduces the immune reaction against enzyme and enhances the efficacy of enzyme replacement therapy in Fabry disease model mice.
    Sato Y; Ida H; Ohashi T
    Clin Immunol; 2017 May; 178():56-63. PubMed ID: 28161408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro model of Fabry disease.
    Shu L; Murphy HS; Cooling L; Shayman JA
    J Am Soc Nephrol; 2005 Sep; 16(9):2636-45. PubMed ID: 16033856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of enzyme replacement therapy on clinical outcomes in paediatric patients with Fabry disease - A systematic literature review by a European panel of experts.
    Spada M; Baron R; Elliott PM; Falissard B; Hilz MJ; Monserrat L; Tøndel C; Tylki-Szymańska A; Wanner C; Germain DP
    Mol Genet Metab; 2019 Mar; 126(3):212-223. PubMed ID: 29785937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics and Gene Therapy of Anderson-Fabry Disease.
    Simonetta I; Tuttolomondo A; Di Chiara T; Miceli S; Vogiatzis D; Corpora F; Pinto A
    Curr Gene Ther; 2018; 18(2):96-106. PubMed ID: 29618309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac manifestations of Fabry disease in G3Stg/GlaKO and GlaKO mouse models-Translation to Fabry disease patients.
    Kugadas A; Artoni P; Ruangsiriluk W; Zhao M; Boukharov N; Islam R; Volfson D; Derakhchan K
    PLoS One; 2024; 19(5):e0304415. PubMed ID: 38820517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease.
    Khanna R; Soska R; Lun Y; Feng J; Frascella M; Young B; Brignol N; Pellegrino L; Sitaraman SA; Desnick RJ; Benjamin ER; Lockhart DJ; Valenzano KJ
    Mol Ther; 2010 Jan; 18(1):23-33. PubMed ID: 19773742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.