BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21124855)

  • 1. Molecular and functional characterization of Hv1 proton channel in human granulocytes.
    Petheo GL; Orient A; Baráth M; Kovács I; Réthi B; Lányi A; Rajki A; Rajnavölgyi E; Geiszt M
    PLoS One; 2010 Nov; 5(11):e14081. PubMed ID: 21124855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes.
    Kovács I; Horváth M; Kovács T; Somogyi K; Tretter L; Geiszt M; Petheő GL
    Free Radic Res; 2014 Oct; 48(10):1190-9. PubMed ID: 24985354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do Hv1 proton channels regulate the ionic and redox homeostasis of phagosomes?
    El Chemaly A; Demaurex N
    Mol Cell Endocrinol; 2012 Apr; 353(1-2):82-7. PubMed ID: 22056415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst.
    Ramsey IS; Ruchti E; Kaczmarek JS; Clapham DE
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7642-7. PubMed ID: 19372380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc accelerates respiratory burst termination in human PMN.
    Droste A; Chaves G; Stein S; Trzmiel A; Schweizer M; Karl H; Musset B
    Redox Biol; 2021 Nov; 47():102133. PubMed ID: 34562872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-gated proton channel is expressed on phagosomes.
    Okochi Y; Sasaki M; Iwasaki H; Okamura Y
    Biochem Biophys Res Commun; 2009 May; 382(2):274-9. PubMed ID: 19285483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gp91phox component of NADPH oxidase is not the voltage-gated proton channel in phagocytes, but it helps.
    DeCoursey TE; Cherny VV; Morgan D; Katz BZ; Dinauer MC
    J Biol Chem; 2001 Sep; 276(39):36063-6. PubMed ID: 11477065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase.
    Wang Q; Zhou H; Gao H; Chen SH; Chu CH; Wilson B; Hong JS
    J Neuroinflammation; 2012 Feb; 9():32. PubMed ID: 22340895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of superoxide overproduction by the D-Loop(Nox4)-Nox2 cytochrome b(558) in phagocytes-Differential sensitivity to calcium and phosphorylation events.
    Carrichon L; Picciocchi A; Debeurme F; Defendi F; Beaumel S; Jesaitis AJ; Dagher MC; Stasia MJ
    Biochim Biophys Acta; 2011 Jan; 1808(1):78-90. PubMed ID: 20708598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase.
    DeCoursey TE
    Immunol Rev; 2016 Sep; 273(1):194-218. PubMed ID: 27558336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of proton channels in COS-7 cells expressing functional NADPH oxidase components.
    Morgan D; Cherny VV; Price MO; Dinauer MC; DeCoursey TE
    J Gen Physiol; 2002 Jun; 119(6):571-80. PubMed ID: 12034764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification.
    El Chemaly A; Okochi Y; Sasaki M; Arnaudeau S; Okamura Y; Demaurex N
    J Exp Med; 2010 Jan; 207(1):129-39. PubMed ID: 20026664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential requirement of cytosolic phospholipase A(2) for stimulation of NADPH oxidase-associated diaphorase activity in granulocyte-like cells.
    Pessach I; Leto TL; Malech HL; Levy R
    J Biol Chem; 2001 Sep; 276(36):33495-503. PubMed ID: 11432850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production.
    Matono R; Miyano K; Kiyohara T; Sumimoto H
    J Biol Chem; 2014 Sep; 289(36):24874-84. PubMed ID: 25056956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of NADPH oxidase in granulocytic cells expressing a delta488-497 gp91(phox) deletion mutant.
    Yu L; Cross AR; Zhen L; Dinauer MC
    Blood; 1999 Oct; 94(7):2497-504. PubMed ID: 10498623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke.
    Tian DS; Li CY; Qin C; Murugan M; Wu LJ; Liu JL
    J Neurochem; 2016 Oct; 139(1):96-105. PubMed ID: 27470181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of phagocyte NADPH oxidase by hydrogen peroxide through a Ca(2+)/c-Abl signaling pathway.
    El Jamali A; Valente AJ; Clark RA
    Free Radic Biol Med; 2010 Mar; 48(6):798-810. PubMed ID: 20043988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells.
    Mantegazza AR; Savina A; Vermeulen M; Pérez L; Geffner J; Hermine O; Rosenzweig SD; Faure F; Amigorena S
    Blood; 2008 Dec; 112(12):4712-22. PubMed ID: 18682599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase.
    Chéret C; Gervais A; Lelli A; Colin C; Amar L; Ravassard P; Mallet J; Cumano A; Krause KH; Mallat M
    J Neurosci; 2008 Nov; 28(46):12039-51. PubMed ID: 19005069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of NOX2 into a constitutive enzyme in vitro and in living cells, after its binding with a chimera of the regulatory subunits.
    Masoud R; Serfaty X; Erard M; Machillot P; Karimi G; Hudik E; Wien F; Baciou L; Houée-Levin C; Bizouarn T
    Free Radic Biol Med; 2017 Dec; 113():470-477. PubMed ID: 29079525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.