These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21124924)

  • 1. Bridging the gap: linking molecular simulations and systemic descriptions of cellular compartments.
    Geyer T; Mol X; Blass S; Helms V
    PLoS One; 2010 Nov; 5(11):e14070. PubMed ID: 21124924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular stochastic simulations of chromatophore vesicles from Rhodobacter sphaeroides.
    Geyer T; Lauck F; Helms V
    J Biotechnol; 2007 Apr; 129(2):212-28. PubMed ID: 17276535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides.
    Geyer T; Helms V
    Biophys J; 2006 Aug; 91(3):927-37. PubMed ID: 16714340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the Cytochrome bc1 complex.
    Geyer T; Helms V
    Biophys J; 2006 Aug; 91(3):921-6. PubMed ID: 16714339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic vesicle architecture and constraints on efficient energy harvesting.
    Sener M; Strümpfer J; Timney JA; Freiberg A; Hunter CN; Schulten K
    Biophys J; 2010 Jul; 99(1):67-75. PubMed ID: 20655834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes.
    Casadio R; Venturoli G; Di Gioia A; Castellani P; Leonardi L; Melandri BA
    J Biol Chem; 1984 Jul; 259(14):9149-57. PubMed ID: 6378907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides.
    Strakhovskaya MG; Lukashev EP; Korvatovskiy BN; Kholina EG; Seifullina NK; Knox PP; Paschenko VZ
    Photosynth Res; 2021 Feb; 147(2):197-209. PubMed ID: 33389445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic curvature properties of photosynthetic proteins in chromatophores.
    Chandler DE; Hsin J; Harrison CB; Gumbart J; Schulten K
    Biophys J; 2008 Sep; 95(6):2822-36. PubMed ID: 18515401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides.
    Chenchiliyan M; Timpmann K; Jalviste E; Adams PG; Hunter CN; Freiberg A
    Biochim Biophys Acta; 2016 Jun; 1857(6):634-42. PubMed ID: 27013332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus.
    Monger TG; Parson WW
    Biochim Biophys Acta; 1977 Jun; 460(3):393-407. PubMed ID: 301747
    [No Abstract]   [Full Text] [Related]  

  • 11. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle.
    Sener MK; Olsen JD; Hunter CN; Schulten K
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15723-8. PubMed ID: 17895378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc
    Swainsbury DJK; Proctor MS; Hitchcock A; Cartron ML; Qian P; Martin EC; Jackson PJ; Madsen J; Armes SP; Hunter CN
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):215-225. PubMed ID: 29291373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models.
    Hitchcock A; Hunter CN; Sener M
    J Phys Chem B; 2017 Apr; 121(15):3787-3797. PubMed ID: 28301162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the decay rates of the triplet state of Rhodopseudomonas sphaeroides by fast laser-flash ESR spectroscopy.
    Gast P; Hoff AJ
    FEBS Lett; 1978 Jan; 85(1):183-8. PubMed ID: 202494
    [No Abstract]   [Full Text] [Related]  

  • 15. Probing the fluorescence emission kinetics of the photosynthetic apparatus of Rhodopseudomonas sphaeroides, strain 1760-1, on a picosecond pulse fluorometer.
    Paschenko VZ; Kononenko AA; Protasov SP; Rubin AB; Rubin LB; Uspenskaya NY
    Biochim Biophys Acta; 1977 Sep; 461(3):403-12. PubMed ID: 302719
    [No Abstract]   [Full Text] [Related]  

  • 16. A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: cytochrome b-cytochrome c2 oxidation-reduction.
    Prince RC; Dutton PL
    Biochim Biophys Acta; 1975 Jun; 387(3):609-13. PubMed ID: 166671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and stoichiometry of proton binding in Phodopseudomonas sphaeroides chromatophores.
    Petty KM; Jackson JB; Dutton PL
    FEBS Lett; 1977 Dec; 84(2):299-303. PubMed ID: 23313
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria.
    Bina D; Litvin R; Vacha F
    Photosynth Res; 2009 Feb; 99(2):115-25. PubMed ID: 19199074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach.
    Verméglio A; Lavergne J; Rappaport F
    Photosynth Res; 2016 Jan; 127(1):13-24. PubMed ID: 25512104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DCCD inhibits the reactions of the iron-sulfur protein in Rhodobacter sphaeroides chromatophores.
    Shinkarev VP; Ugulava NB; Crofts AR; Wraight CA
    Biochemistry; 2000 Dec; 39(51):16206-12. PubMed ID: 11123950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.